|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM311637590 |
003 |
DE-627 |
005 |
20240114232808.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.plaphy.2020.06.021
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1253.xml
|
035 |
|
|
|a (DE-627)NLM311637590
|
035 |
|
|
|a (NLM)32585429
|
035 |
|
|
|a (PII)S0981-9428(20)30303-X
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gao, Minling
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Foliar graphene oxide treatment increases photosynthetic capacity and reduces oxidative stress in cadmium-stressed lettuce
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.12.2020
|
500 |
|
|
|a Date Revised 09.01.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2020 Elsevier Masson SAS. All rights reserved.
|
520 |
|
|
|a The application of graphene oxide (GO) in the environment can have a positive or negative effect on the toxicity of pollutants, but the effect of GO on cadmium (Cd2+)-stressed lettuce has not yet been thoroughly studied. Therefore, we assessed the potential effects of foliar GO sprays on photosynthesis and antioxidant systems in Cd-stressed lettuce. We found that the foliar application of 30 mg L-1 of GO could significantly reduce signs of Cd2+ toxicity in lettuce. We observed increased net photosynthetic rates, stomatal conductance, transpiration rates, chlorophyll content, primary maximum photochemical efficiency of photosystem II, actual quantum yield, photosynthetic electron transport rates, ribulose-1,5-bisphosphate carboxylase and oxygenase concentrations, and biomass in Cd2+-stressed lettuce treated with GO. In addition, the foliar application of 30 mg L-1 of GO reduced the accumulation of the reactive oxygen species O·̄2 and H2O2, malondialdehyde content, and the activity of antioxidant enzymes. The decreased antioxidant enzyme activity could have been due to the decrease in reactive oxygen species. Cd2+ pollution is highly destructive to agricultural products, and the foliar application of GO provides a new potential tactic to improve the tolerance of plants to heavy metals
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Antioxidants
|
650 |
|
4 |
|a Cadmium
|
650 |
|
4 |
|a Foliar application
|
650 |
|
4 |
|a Graphene oxide
|
650 |
|
4 |
|a Lettuce
|
650 |
|
4 |
|a Photosynthesis
|
650 |
|
7 |
|a Antioxidants
|2 NLM
|
650 |
|
7 |
|a Reactive Oxygen Species
|2 NLM
|
650 |
|
7 |
|a graphene oxide
|2 NLM
|
650 |
|
7 |
|a Cadmium
|2 NLM
|
650 |
|
7 |
|a 00BH33GNGH
|2 NLM
|
650 |
|
7 |
|a Chlorophyll
|2 NLM
|
650 |
|
7 |
|a 1406-65-1
|2 NLM
|
650 |
|
7 |
|a Graphite
|2 NLM
|
650 |
|
7 |
|a 7782-42-5
|2 NLM
|
650 |
|
7 |
|a Hydrogen Peroxide
|2 NLM
|
650 |
|
7 |
|a BBX060AN9V
|2 NLM
|
700 |
1 |
|
|a Chang, Xipeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Yujuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Zhengguo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant physiology and biochemistry : PPB
|d 1991
|g 154(2020) vom: 23. Sept., Seite 287-294
|w (DE-627)NLM098178261
|x 1873-2690
|7 nnns
|
773 |
1 |
8 |
|g volume:154
|g year:2020
|g day:23
|g month:09
|g pages:287-294
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.plaphy.2020.06.021
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 154
|j 2020
|b 23
|c 09
|h 287-294
|