|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM311529003 |
003 |
DE-627 |
005 |
20231225142440.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.16767
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1038.xml
|
035 |
|
|
|a (DE-627)NLM311529003
|
035 |
|
|
|a (NLM)32574402
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhu, Juntao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synergistic effects of nitrogen and CO2 enrichment on alpine grassland biomass and community structure
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.05.2021
|
500 |
|
|
|a Date Revised 14.05.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Dryad: 10.5061/dryad.4tmpg4f6z
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2020 The Authors. New Phytologist © 2020 New Phytologist Foundation.
|
520 |
|
|
|a Global environmental change is altering the Earth's ecosystems. However, much research has focused on ecosystem-level responses, and we know substantially less about community-level responses to global change stressors. Here we conducted a 6-yr field experiment in a high-altitude (4600 m asl) alpine grassland on the Tibetan Plateau to explore the effects of nitrogen (N) addition and rising atmospheric CO2 concentration on plant communities. Our results showed that N and CO2 enrichment had synergistic effects on alpine grassland communities. Adding nitrogen or CO2 alone did not alter total community biomass, species diversity or community composition, whereas adding both resources together increased community biomass, reduced species diversity and altered community composition. The observed decline in species diversity under simultaneous N and CO2 enrichment was associated with greater community biomass and lower soil water content, and driven by the loss of species characterised simultaneously by tall stature and small specific leaf area. Our findings point to the co-limitation of alpine plant community biomass and structure by nitrogen and CO2 , emphasising the need for future studies to consider multiple aspects of global environmental change together to gain a more complete understanding of their ecological consequences
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Alpine grasslands
|
650 |
|
4 |
|a CO2 enrichment
|
650 |
|
4 |
|a community composition
|
650 |
|
4 |
|a nitrogen (N) addition
|
650 |
|
4 |
|a plant traits
|
650 |
|
4 |
|a species diversity
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Zhang, Yangjian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Xian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Ning
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Lin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 228(2020), 4 vom: 01. Nov., Seite 1283-1294
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:228
|g year:2020
|g number:4
|g day:01
|g month:11
|g pages:1283-1294
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.16767
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 228
|j 2020
|e 4
|b 01
|c 11
|h 1283-1294
|