An All-Scale Hierarchical Architecture Induces Colossal Room-Temperature Electrocaloric Effect at Ultralow Electric Field in Polymer Nanocomposites
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 30 vom: 15. Juli, Seite e1907927 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article compound configuration electrocaloric effect interfacial polarization polymer nanocomposites |
Zusammenfassung: | © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Composed of electrocaloric (EC) ceramics and polymers, polymer composites with high EC performances are considered as promising candidates for next-generation all-solid-state cooling devices. Their mass application is limited by the low EC strength, which requires very high operational voltage to induce appreciable temperature change. Here, an all-scale hierarchical architecture is proposed and demonstrated to achieve high EC strength in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)-based nanocomposites. On the atomic scale, highly polarizable hierarchical interfaces are induced by incorporating BiFeO3 (BFO) nanoparticles in Ba(Zr0.21 Ti0.79 )O3 (BZT) nanofibers (BFOBZT_nfs); on the microscopic scale, percolation of the interfaces further raises the polarization of the composite nanofibers; on the mesoscopic scale, orthotropic orientation of BFO@BZT_nfs leads to much enhanced breakdown strength of the nanocomposites. As a result, an ultrahigh EC strength of ≈0.22 K m MV-1 is obtained at an ultralow electric field of 75 MV m-1 in nanocomposites filled with the orthotropic composite nanofibers, which is by far the highest value achieved in polymer nanocomposites at a moderate electric field. Results of high-angle annular dark-field scanning transmission electron microscopy, in situ scanning Kelvin probe microscopy characterization, and phase-field simulations all indicate that the much enhanced EC performances can be attributed to the all-scale hierarchical structures of the nanocomposite |
---|---|
Beschreibung: | Date Revised 16.11.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201907927 |