|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM311457525 |
003 |
DE-627 |
005 |
20231225142309.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202001292
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1038.xml
|
035 |
|
|
|a (DE-627)NLM311457525
|
035 |
|
|
|a (NLM)32567128
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ren, Xiao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Constructing an Adaptive Heterojunction as a Highly Active Catalyst for the Oxygen Evolution Reaction
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 16.11.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Electrochemical water splitting is of prime importance to green energy technology. Particularly, the reaction at the anode side, namely the oxygen evolution reaction (OER), requires a high overpotential associated with OO bond formation, which dominates the energy-efficiency of the whole process. Activating the anionic redox chemistry of oxygen in metal oxides, which involves the formation of superoxo/peroxo-like (O2 )n - , commonly occurs in most highly active catalysts during the OER process. In this study, a highly active catalyst is designed: electrochemically delithiated LiNiO2 , which facilitates the formation of superoxo/peroxo-like (O2 )n - species, i.e., NiOO*, for enhancing OER activity. The OER-induced surface reconstruction builds an adaptive heterojunction, where NiOOH grows on delithiated LiNiO2 (delithiated-LiNiO2 /NiOOH). At this junction, the lithium vacancies within the delithiated LiNiO2 optimize the electronic structure of the surface NiOOH to form stable NiOO* species, which enables better OER activity. This finding provides new insight for designing highly active catalysts with stable superoxo-like/peroxo-like (O2 )n - for water oxidation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a adaptive junctions
|
650 |
|
4 |
|a cycling
|
650 |
|
4 |
|a delithiation
|
650 |
|
4 |
|a oxygen evolution
|
650 |
|
4 |
|a reconstruction
|
700 |
1 |
|
|a Wei, Chao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Yuanmiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xiaozhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meng, Fanqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meng, Xiaoxia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Shengnan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xi, Shibo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Du, Yonghua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bi, Zhuanfang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shang, Guangyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fisher, Adrian C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gu, Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Zhichuan J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 30 vom: 03. Juli, Seite e2001292
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:30
|g day:03
|g month:07
|g pages:e2001292
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202001292
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 30
|b 03
|c 07
|h e2001292
|