Rhizosphere control of soil nitrogen cycling : a key component of plant economic strategies

© 2020 The Authors. New Phytologist © 2020 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1984. - 228(2020), 4 vom: 20. Nov., Seite 1269-1282
1. Verfasser: Henneron, Ludovic (VerfasserIn)
Weitere Verfasser: Kardol, Paul, Wardle, David A, Cros, Camille, Fontaine, Sébastien
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't decomposition leaf and root traits nutrient cycling photosynthesis plant economics spectrum plant-soil interactions rhizodeposition rhizosphere priming effect mehr... Soil Carbon 7440-44-0 Nitrogen N762921K75
Beschreibung
Zusammenfassung:© 2020 The Authors. New Phytologist © 2020 New Phytologist Foundation.
Understanding how plant species influence soil nutrient cycling is a major theme in terrestrial ecosystem ecology. However, the prevailing paradigm has mostly focused on litter decomposition, while rhizosphere effects on soil organic matter (SOM) decomposition have attracted little attention. Using a dual 13 C/15 N labeling approach in a 'common garden' glasshouse experiment, we investigated how the economic strategies of 12 grassland plant species (graminoids, forbs and legumes) drive soil nitrogen (N) cycling via rhizosphere processes, and how this in turn affects plant N acquisition and growth. Acquisitive species with higher photosynthesis, carbon rhizodeposition and N uptake than conservative species induced a stronger acceleration of soil N cycling through rhizosphere priming of SOM decomposition. This allowed them to take up larger amounts of N and allocate it above ground to promote photosynthesis, thereby sustaining their faster growth. The N2 -fixation ability of legumes enhanced rhizosphere priming by promoting photosynthesis and rhizodeposition. Our study demonstrates that the economic strategies of plant species regulate a plant-soil carbon-nitrogen feedback operating through the rhizosphere. These findings provide novel mechanistic insights into how plant species with contrasting economic strategies sustain their nutrition and growth through regulating the cycling of nutrients by soil microbes in their rhizosphere
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.16760