Describing health care waste generation rates using regression modeling and principal component analysis

Copyright © 2018 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 78(2018) vom: 15. Aug., Seite 811-818
1. Verfasser: Minoglou, Minas (VerfasserIn)
Weitere Verfasser: Komilis, Dimitrios
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Hazardous waste Hospital waste Medical waste Solid waste Statistical analysis
LEADER 01000naa a22002652 4500
001 NLM311386377
003 DE-627
005 20231225142136.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2018.06.053  |2 doi 
028 5 2 |a pubmed24n1037.xml 
035 |a (DE-627)NLM311386377 
035 |a (NLM)32559976 
035 |a (PII)S0956-053X(18)30419-7 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Minoglou, Minas  |e verfasserin  |4 aut 
245 1 0 |a Describing health care waste generation rates using regression modeling and principal component analysis 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.06.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2018 Elsevier Ltd. All rights reserved. 
520 |a This work examined the dependence of the health care waste generation rates (HCWGR) from economic factors (gross domestic product per capita, health expenditure per capita), social and health-related factors (human development index, life expectancy at birth, mean years of schooling, deaths due to tuberculosis, under-five mortality rate, hospital beds, improved sanitation facilities, physicians, nurses and midwives, diabetes prevalence, deaths due to cancer, deaths due to asthma, deaths due to influenza and pneumonia), and one environmental sustainability factor (carbon dioxide emissions) from 41 countries using multiple linear regression modeling and principal component analysis (PCA). In addition, the Pearson correlation coefficients were calculated for all pairwise comparisons and a geographical grouping of the HCWGR was performed. The examined HCWGR included both the hazardous and the municipal fraction of health care waste (HCW). Results showed that the CO2 emissions and the life expectancy at birth positively correlated to the HCWGR (kg/bed/d) and can be used as adequate statistical predictors. The resulting best reduced model explained 84.7% of the variability. The hospital beds and the deaths due to cancer were not correlated to any principal component due to their low loadings. Only the diabetes prevalence was correlated to the F2 principal component. The other fourteen variables were correlated to the F1, which was the most significant principal component. Thus, the HCWGR and the other thirteen variables that were grouped to the F1 component have strong autocorrelation and can be treated as one variable 
650 4 |a Journal Article 
650 4 |a Hazardous waste 
650 4 |a Hospital waste 
650 4 |a Medical waste 
650 4 |a Solid waste 
650 4 |a Statistical analysis 
700 1 |a Komilis, Dimitrios  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 78(2018) vom: 15. Aug., Seite 811-818  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:78  |g year:2018  |g day:15  |g month:08  |g pages:811-818 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2018.06.053  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 78  |j 2018  |b 15  |c 08  |h 811-818