Quantitative proteomics analysis of tomato growth inhibition by ammonium nitrogen

Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 154(2020) vom: 18. Sept., Seite 129-141
1. Verfasser: Xun, Zhili (VerfasserIn)
Weitere Verfasser: Guo, Xiaofei, Li, Yaling, Wen, Xiangzhen, Wang, Chuanqi, Wang, Yue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Ammonium nitrogen Growth inhibition Proteomics Tomato Ammonium Compounds Nitrates Glutamate Dehydrogenase EC 1.4.1.2 Carbonic Anhydrases mehr... EC 4.2.1.1 Glutamate-Ammonia Ligase EC 6.3.1.2 Nitrogen N762921K75
Beschreibung
Zusammenfassung:Copyright © 2020 Elsevier Masson SAS. All rights reserved.
As a single nitrogen source, ammonium (NH4+) can inhibit the growth of plants, especially when applied in excess. Tandem mass tag (TMT) quantitative proteomics technology was employed in the current study to explore and analyze the mechanisms of ammonium-induced inhibition. F1 tomato (Lycopersicon esculentum Mill) was used in this study. Seedlings at the four leaf-stages grown in a greenhouse were irrigated using nutrient solution with NH4+-N as single nitrogen source (15 mmol L-1, single NO3--N as control) for 5 weeks. Compared to the control, the root biomass of NH4+-N-treated seedlings decreased by 50%. In addition, NH4+ content in roots was 2.83-fold increased and soluble sugar and protein contents were increased. However, the starch content did not change significantly. The activities of glutamine synthetase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH), which are involved in ammonium assimilation, were increased, and glutamine (Gln) content was also increased. However, glutamate (Glu) content, which is important for amino transfer, did not significantly increase. Ammonium assimilation was inhibited. Root quantitative proteomics showed that carbonic anhydrase Q5NE21 was significantly downregulated. Although K4BPV5 and K4D9J3 proteins, which improve ammonium assimilation, were upregulated, ammonium assimilation was limited. In addition, NH4+ accumulated, which is likely due to Q5NE21 downregulation. Meanwhile, cell wall metabolism related to phenylpropanoid biosynthesis was altered due to the accumulation of NH4+ levels. Subsequently, tomato root growth was inhibited
Beschreibung:Date Completed 10.12.2020
Date Revised 07.12.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2020.05.036