SeedGerm : a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination

© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 228(2020), 2 vom: 01. Okt., Seite 778-793
1. Verfasser: Colmer, Joshua (VerfasserIn)
Weitere Verfasser: O'Neill, Carmel M, Wells, Rachel, Bostrom, Aaron, Reynolds, Daniel, Websdale, Danny, Shiralagi, Gagan, Lu, Wei, Lou, Qiaojun, Le Cornu, Thomas, Ball, Joshua, Renema, Jim, Flores Andaluz, Gema, Benjamins, Rene, Penfield, Steven, Zhou, Ji
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't big data biology crop seeds germination scoring machine learning phenotypic analysis seed germination seed imaging Abscisic Acid 72S9A8J5GW
LEADER 01000naa a22002652 4500
001 NLM311129838
003 DE-627
005 20231225141610.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.16736  |2 doi 
028 5 2 |a pubmed24n1037.xml 
035 |a (DE-627)NLM311129838 
035 |a (NLM)32533857 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Colmer, Joshua  |e verfasserin  |4 aut 
245 1 0 |a SeedGerm  |b a cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.05.2021 
500 |a Date Revised 16.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. 
520 |a Efficient seed germination and establishment are important traits for field and glasshouse crops. Large-scale germination experiments are laborious and prone to observer errors, leading to the necessity for automated methods. We experimented with five crop species, including tomato, pepper, Brassica, barley, and maize, and concluded an approach for large-scale germination scoring. Here, we present the SeedGerm system, which combines cost-effective hardware and open-source software for seed germination experiments, automated seed imaging, and machine-learning based phenotypic analysis. The software can process multiple image series simultaneously and produce reliable analysis of germination- and establishment-related traits, in both comma-separated values (CSV) and processed images (PNG) formats. In this article, we describe the hardware and software design in detail. We also demonstrate that SeedGerm could match specialists' scoring of radicle emergence. Germination curves were produced based on seed-level germination timing and rates rather than a fitted curve. In particular, by scoring germination across a diverse panel of Brassica napus varieties, SeedGerm implicates a gene important in abscisic acid (ABA) signalling in seeds. We compared SeedGerm with existing methods and concluded that it could have wide utilities in large-scale seed phenotyping and testing, for both research and routine seed technology applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a big data biology 
650 4 |a crop seeds 
650 4 |a germination scoring 
650 4 |a machine learning 
650 4 |a phenotypic analysis 
650 4 |a seed germination 
650 4 |a seed imaging 
650 7 |a Abscisic Acid  |2 NLM 
650 7 |a 72S9A8J5GW  |2 NLM 
700 1 |a O'Neill, Carmel M  |e verfasserin  |4 aut 
700 1 |a Wells, Rachel  |e verfasserin  |4 aut 
700 1 |a Bostrom, Aaron  |e verfasserin  |4 aut 
700 1 |a Reynolds, Daniel  |e verfasserin  |4 aut 
700 1 |a Websdale, Danny  |e verfasserin  |4 aut 
700 1 |a Shiralagi, Gagan  |e verfasserin  |4 aut 
700 1 |a Lu, Wei  |e verfasserin  |4 aut 
700 1 |a Lou, Qiaojun  |e verfasserin  |4 aut 
700 1 |a Le Cornu, Thomas  |e verfasserin  |4 aut 
700 1 |a Ball, Joshua  |e verfasserin  |4 aut 
700 1 |a Renema, Jim  |e verfasserin  |4 aut 
700 1 |a Flores Andaluz, Gema  |e verfasserin  |4 aut 
700 1 |a Benjamins, Rene  |e verfasserin  |4 aut 
700 1 |a Penfield, Steven  |e verfasserin  |4 aut 
700 1 |a Zhou, Ji  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 228(2020), 2 vom: 01. Okt., Seite 778-793  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:228  |g year:2020  |g number:2  |g day:01  |g month:10  |g pages:778-793 
856 4 0 |u http://dx.doi.org/10.1111/nph.16736  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 228  |j 2020  |e 2  |b 01  |c 10  |h 778-793