Wettability-Guided Screen Printing of Perovskite Microlaser Arrays for Current-Driven Displays
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 29 vom: 01. Juli, Seite e2001999 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2020
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article LED patterns halide perovskites laser displays microlaser arrays screen printing |
Résumé: | © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Halide perovskites have shown tremendous potential for next-generation flat-panel laser displays due to their remarkable optoelectronic properties and outstanding material processability; however, the lack of a general approach for the fast growth of perovskite laser arrays capable of electrical operations impedes actualization of their display applications. Herein, a universal and robust wettability-guided screen-printing technique is reported for the rapid growth of large-scale multicolor perovskite microdisk laser arrays, which can serve as laser display panels and further be used to realize current-driven displays. The perovskite microlasers are precisely defined with controlled physical dimensions and spatial locations by such a printing strategy, and each perovskite microlaser serves as a pixel of a display panel. Moreover, the screen-printing procedure is highly compatible with light-emitting diode (LED) device architectures, which is favorable for the mass production of micro-LED arrays. On this basis, a prototype of a current-driven display is demonstrated with desired functionalities. The outstanding performance and feasible fabrication of screen-printed perovskite microlaser arrays embedded in LEDs provide deep insights into the concepts and device architectures of electrically driven laser display technology |
---|---|
Description: | Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202001999 |