Comparison of UV-induced AOPs (UV/Cl2, UV/NH2Cl, UV/ClO2 and UV/H2O2 ) in the degradation of iopamidol : Kinetics, energy requirements and DBPs-related toxicity in sequential disinfection processes

© 2020 Elsevier B.V. All rights reserved.

Détails bibliographiques
Publié dans:Chemical engineering journal (Lausanne, Switzerland : 1996). - 1999. - 398(2020) vom: 15. Okt., Seite 125570
Auteur principal: Tian, Fu-Xiang (Auteur)
Autres auteurs: Ye, Wen-Kai, Xu, Bin, Hu, Xiao-Jun, Ma, Shi-Xu, Lai, Fan, Gao, Yu-Qiong, Xing, Hai-Bo, Xia, Wei-Hong, Wang, Bo
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Chemical engineering journal (Lausanne, Switzerland : 1996)
Sujets:Journal Article Degradation Electrical energy per order (EE/O) Iodo-trihalomethanes (I-THMs) Iopamidol Toxicity UV-based advanced oxidation processes (AOPs)
LEADER 01000caa a22002652c 4500
001 NLM310880149
003 DE-627
005 20250227094229.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cej.2020.125570  |2 doi 
028 5 2 |a pubmed25n1036.xml 
035 |a (DE-627)NLM310880149 
035 |a (NLM)32508521 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Fu-Xiang  |e verfasserin  |4 aut 
245 1 0 |a Comparison of UV-induced AOPs (UV/Cl2, UV/NH2Cl, UV/ClO2 and UV/H2O2 ) in the degradation of iopamidol  |b Kinetics, energy requirements and DBPs-related toxicity in sequential disinfection processes 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Elsevier B.V. All rights reserved. 
520 |a The UV-induced advanced oxidation processes (AOPs, including UV/Cl2, UV/NH2Cl, UV/ClO2 and UV/H2O2 ) degradation kinetics and energy requirements of iopamidol as well as DBPs-related toxicity in sequential disinfection were compared in this study. The photodegradation of iopamidol in these processes can be well described by pseudo-first-order model and the removal efficiency ranked in descending order of UV/Cl2  > UV/H2O2  > UV/NH2Cl > UV/ClO2  > UV. The synergistic effects could be attributed to diverse radical species generated in each system. Influencing factors of oxidant dosage, UV intensity, solution pH and water matrixes (Cl- , NH4 + and nature organic matter) were evaluated in detail. Higher oxidant dosages and greater UV intensities led to bigger pseudo-first-order rate constants (Kobs) in these processes, but the pH behaviors exhibited quite differently. The presence of Cl- , NH4 + and nature organic matter posed different effects on the degradation rate. The parameter of electrical energy per order (EE/O) was adopted to evaluate the energy requirements of the tested systems and it followed the trend of UV/ClO2  > UV > UV/NH2Cl > UV/H2O2  > UV/Cl2 . Pretreatment of iopamidol by UV/Cl2 and UV/NH2Cl clearly enhanced the production of classical disinfection by-products (DBPs) and iodo-trihalomethanes (I-THMs) during subsequent oxidation while UV/ClO2 and UV/H2O2 exhibited almost elimination effect. From the perspective of weighted water toxicity, the risk ranking was UV/NH2Cl > UV/Cl2 > UV > UV/H2O2 > UV/ClO2 . Among the discussed UV-driven AOPs, UV/Cl2 was proved to be the most cost-effective one for iopamidol removal while UV/ClO2 displayed overwhelming advantages in regulating the water toxicity associated with DBPs, especially I-THMs. The present results could provide some insights into the application of UV-activated AOPs technologies in tradeoffs between cost-effectiveness assessment and DBPs-related toxicity control of the disinfected waters containing iopamidol 
650 4 |a Journal Article 
650 4 |a Degradation 
650 4 |a Electrical energy per order (EE/O) 
650 4 |a Iodo-trihalomethanes (I-THMs) 
650 4 |a Iopamidol 
650 4 |a Toxicity 
650 4 |a UV-based advanced oxidation processes (AOPs) 
700 1 |a Ye, Wen-Kai  |e verfasserin  |4 aut 
700 1 |a Xu, Bin  |e verfasserin  |4 aut 
700 1 |a Hu, Xiao-Jun  |e verfasserin  |4 aut 
700 1 |a Ma, Shi-Xu  |e verfasserin  |4 aut 
700 1 |a Lai, Fan  |e verfasserin  |4 aut 
700 1 |a Gao, Yu-Qiong  |e verfasserin  |4 aut 
700 1 |a Xing, Hai-Bo  |e verfasserin  |4 aut 
700 1 |a Xia, Wei-Hong  |e verfasserin  |4 aut 
700 1 |a Wang, Bo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemical engineering journal (Lausanne, Switzerland : 1996)  |d 1999  |g 398(2020) vom: 15. Okt., Seite 125570  |w (DE-627)NLM098273531  |x 1385-8947  |7 nnas 
773 1 8 |g volume:398  |g year:2020  |g day:15  |g month:10  |g pages:125570 
856 4 0 |u http://dx.doi.org/10.1016/j.cej.2020.125570  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 398  |j 2020  |b 15  |c 10  |h 125570