Artificial Chemist : An Autonomous Quantum Dot Synthesis Bot

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 30 vom: 21. Juli, Seite e2001626
Auteur principal: Epps, Robert W (Auteur)
Autres auteurs: Bowen, Michael S, Volk, Amanda A, Abdel-Latif, Kameel, Han, Suyong, Reyes, Kristofer G, Amassian, Aram, Abolhasani, Milad
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article autonomous synthesis machine learning microfluidics perovskites quantum dots
LEADER 01000caa a22002652c 4500
001 NLM310750520
003 DE-627
005 20250227092025.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202001626  |2 doi 
028 5 2 |a pubmed25n1035.xml 
035 |a (DE-627)NLM310750520 
035 |a (NLM)32495399 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Epps, Robert W  |e verfasserin  |4 aut 
245 1 0 |a Artificial Chemist  |b An Autonomous Quantum Dot Synthesis Bot 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemist is presented: the integration of machine-learning-based experiment selection and high-efficiency autonomous flow chemistry. With the self-driving Artificial Chemist, made-to-measure inorganic perovskite quantum dots (QDs) in flow are autonomously synthesized, and their quantum yield and composition polydispersity at target bandgaps, spanning 1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven precision-tailored QD synthesis compositions are obtained without any prior knowledge, within 30 h, using less than 210 mL of total starting QD solutions, and without user selection of experiments. Using the knowledge generated from these studies, the Artificial Chemist is pre-trained to use a new batch of precursors and further accelerate the synthetic path discovery of QD compositions, by at least twofold. The knowledge-transfer strategy further enhances the optoelectronic properties of the in-flow synthesized QDs (within the same resources as the no-prior-knowledge experiments) and mitigates the issues of batch-to-batch precursor variability, resulting in QDs averaging within 1 meV from their target peak emission energy 
650 4 |a Journal Article 
650 4 |a autonomous synthesis 
650 4 |a machine learning 
650 4 |a microfluidics 
650 4 |a perovskites 
650 4 |a quantum dots 
700 1 |a Bowen, Michael S  |e verfasserin  |4 aut 
700 1 |a Volk, Amanda A  |e verfasserin  |4 aut 
700 1 |a Abdel-Latif, Kameel  |e verfasserin  |4 aut 
700 1 |a Han, Suyong  |e verfasserin  |4 aut 
700 1 |a Reyes, Kristofer G  |e verfasserin  |4 aut 
700 1 |a Amassian, Aram  |e verfasserin  |4 aut 
700 1 |a Abolhasani, Milad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 30 vom: 21. Juli, Seite e2001626  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:32  |g year:2020  |g number:30  |g day:21  |g month:07  |g pages:e2001626 
856 4 0 |u http://dx.doi.org/10.1002/adma.202001626  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 30  |b 21  |c 07  |h e2001626