Ultralow Voltage Manipulation of Ferromagnetism

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 28 vom: 01. Juli, Seite e2001943
1. Verfasser: Prasad, Bhagwati (VerfasserIn)
Weitere Verfasser: Huang, Yen-Lin, Chopdekar, Rajesh V, Chen, Zuhuang, Steffes, James, Das, Sujit, Li, Qian, Yang, Mengmeng, Lin, Chia-Ching, Gosavi, Tanay, Nikonov, Dmitri E, Qiu, Zi Qiang, Martin, Lane W, Huey, Bryan D, Young, Ian, Íñiguez, Jorge, Manipatruni, Sasikanth, Ramesh, Ramamoorthy
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article magnetoelectrics multiferroics nonvolatile memories spintronics ultralow-power spintronics
Beschreibung
Zusammenfassung:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spintronic elements based on spin transfer torque have emerged with potential for on-chip memory, but they suffer from large energy dissipation due to the large current densities required. In contrast, an electric-field-driven magneto-electric storage element can operate with capacitive displacement charge and potentially reach 1-10 µJ cm-2 switching operation. Here, magneto-electric switching of a magnetoresistive element is shown, operating at or below 200 mV, with a pathway to get down to 100 mV. A combination of phase detuning is utilized via isovalent La substitution and thickness scaling in multiferroic BiFeO3 to scale the switching energy density to ≈10 µJ cm-2 . This work provides a template to achieve attojoule-class nonvolatile memories
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202001943