Does influent C/N ratio affect pollutant removal and greenhouse gas emission in wastewater ecological soil infiltration systems with/without intermittent aeration?
Wastewater ecological soil infiltration system (WESIS) is a land treatment technology for decentralized wastewater treatment that has been applied all over the world. In this study, the pollutant removal, emission of greenhouse gases (GHGs) and functional gene abundances with different influent C/N...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 81(2020), 4 vom: 11. Feb., Seite 668-678 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Environmental Pollutants Greenhouse Gases RNA, Ribosomal, 16S Soil Waste Water Nitrogen N762921K75 |
Zusammenfassung: | Wastewater ecological soil infiltration system (WESIS) is a land treatment technology for decentralized wastewater treatment that has been applied all over the world. In this study, the pollutant removal, emission of greenhouse gases (GHGs) and functional gene abundances with different influent C/N ratios were evaluated in WESISs with/without intermittent aeration. Intermittent aeration and influent C/N ratio affect pollutant removal and GHG emission. Increased influent C/N ratio led to high total nitrogen (TN) removal, low CH4 and N2O emission in the aerated WESIS, which was different from the non-aerated WESIS. High average removal efficiencies of chemical oxygen demand (COD) (94.8%), NH4+-N (95.1%), TN (91.2%), total phosphorus (TP) (91.1%) and low emission rates for CH4 (27.2 mg/(m2 d)) and N2O (10.5 mg/(m2 d)) were achieved with an influent C/N ratio of 12:1 in the aerated WESIS. Intermittent aeration enhanced the abundances of bacterial 16S rRNA, amoA, nxrA, narG, napA, nirK, nirS, qnorB, nosZ genes and decreased the abundances of the mcrA gene, which are involved in pollutant removal and GHG emission. Intermittent aeration would be an effective alternative to achieving high pollutant removal and low CH4 and N2O emission in high influent C/N ratio wastewater treatment |
---|---|
Beschreibung: | Date Completed 29.05.2020 Date Revised 07.12.2022 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2020.141 |