Quantification of Viable Cells of Pseudomonas syringae pv. tomato in Tomato Seed Using Propidium Monoazide and a Real-Time PCR Assay

Pseudomonas syringae pv. tomato is a seedborne pathogen that causes bacterial speck disease in tomato. P. syringae pv. tomato is typically detected in tomato seed using quantitative real-time PCR (qPCR) but the inability of qPCR to distinguish between viable and nonviable cells might lead to an over...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 104(2020), 8 vom: 19. Aug., Seite 2225-2232
1. Verfasser: Chai, A-Li (VerfasserIn)
Weitere Verfasser: Ben, Hai-Yan, Guo, Wei-Tao, Shi, Yan-Xia, Xie, Xue-Wen, Li, Lei, Li, Bao-Ju
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Pseudomonas syringae pv. tomato propidium monoazide quantitative real-time PCR tomato bacterial speck Azides Propidium 36015-30-2
Beschreibung
Zusammenfassung:Pseudomonas syringae pv. tomato is a seedborne pathogen that causes bacterial speck disease in tomato. P. syringae pv. tomato is typically detected in tomato seed using quantitative real-time PCR (qPCR) but the inability of qPCR to distinguish between viable and nonviable cells might lead to an overestimation of viable P. syringae pv. tomato cells. In the present study, a strategy involving a propidium monoazide (PMA) pretreatment followed by a qPCR (PMA-qPCR) assay was developed for quantifying viable P. syringae pv. tomato cells in contaminated tomato seed. PMA could selectively bind to the chromosomal DNA of dead bacterial cells and, therefore, block DNA amplification of qPCR. The primer pair Pst3F/Pst3R was designed based on gene hrpZ to specifically amplify and quantify P. syringae pv. tomato by qPCR. The PMA pretreatment protocol was optimized for selectively detecting viable P. syringae pv. tomato cells, and the optimal PMA concentration and light exposure time were 10 μmol liter-1 and 10 min, respectively. In the sensitivity test, the detection limit of PMA-qPCR for detecting viable cells in bacterial suspension and artificially contaminated tomato seed was 102 CFU ml-1 and 11.86 CFU g-1, respectively. For naturally contaminated tomato seed, viable P. syringae pv. tomato cells were quantified in 6 of the 19 samples, with infestation levels of approximately 102 to 104 CFU g-1. The results indicated that the PMA-qPCR assay is a suitable tool for quantifying viable P. syringae pv. tomato cells in tomato seed, which could be useful for avoiding the potential risks of primary inoculum sources from contaminated seed
Beschreibung:Date Completed 30.07.2020
Date Revised 07.12.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:0191-2917
DOI:10.1094/PDIS-11-19-2397-RE