Quasi-Binary Transition Metal Dichalcogenide Alloys : Thermodynamic Stability Prediction, Scalable Synthesis, and Application

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 26 vom: 15. Juli, Seite e1907041
1. Verfasser: Hemmat, Zahra (VerfasserIn)
Weitere Verfasser: Cavin, John, Ahmadiparidari, Alireza, Ruckel, Alexander, Rastegar, Sina, Misal, Saurabh N, Majidi, Leily, Kumar, Khagesh, Wang, Shuxi, Guo, Jinglong, Dawood, Radwa, Lagunas, Francisco, Parajuli, Prakash, Ngo, Anh Tuan, Curtiss, Larry A, Cho, Sung Beom, Cabana, Jordi, Klie, Robert F, Mishra, Rohan, Salehi-Khojin, Amin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CO2 reduction alloys density functional theory phase diagrams thermal stability transition metal dichalcogenides
LEADER 01000naa a22002652 4500
001 NLM310313651
003 DE-627
005 20231225135827.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201907041  |2 doi 
028 5 2 |a pubmed24n1034.xml 
035 |a (DE-627)NLM310313651 
035 |a (NLM)32449197 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hemmat, Zahra  |e verfasserin  |4 aut 
245 1 0 |a Quasi-Binary Transition Metal Dichalcogenide Alloys  |b Thermodynamic Stability Prediction, Scalable Synthesis, and Application 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Transition metal dichalcogenide (TMDCs) alloys could have a wide range of physical and chemical properties, ranging from charge density waves to superconductivity and electrochemical activities. While many exciting behaviors of unary TMDCs have been demonstrated, the vast compositional space of TMDC alloys has remained largely unexplored due to the lack of understanding regarding their stability when accommodating different cations or chalcogens in a single-phase. Here, a theory-guided synthesis approach is reported to achieve unexplored quasi-binary TMDC alloys through computationally predicted stability maps. Equilibrium temperature-composition phase diagrams using first-principles calculations are generated to identify the stability of 25 quasi-binary TMDC alloys, including some involving non-isovalent cations and are verified experimentally through the synthesis of a subset of 12 predicted alloys using a scalable chemical vapor transport method. It is demonstrated that the synthesized alloys can be exfoliated into 2D structures, and some of them exhibit: i) outstanding thermal stability tested up to 1230 K, ii) exceptionally high electrochemical activity for the CO2 reduction reaction in a kinetically limited regime with near zero overpotential for CO formation, iii) excellent energy efficiency in a high rate Li-air battery, and iv) high break-down current density for interconnect applications. This framework can be extended to accelerate the discovery of other TMDC alloys for various applications 
650 4 |a Journal Article 
650 4 |a CO2 reduction 
650 4 |a alloys 
650 4 |a density functional theory 
650 4 |a phase diagrams 
650 4 |a thermal stability 
650 4 |a transition metal dichalcogenides 
700 1 |a Cavin, John  |e verfasserin  |4 aut 
700 1 |a Ahmadiparidari, Alireza  |e verfasserin  |4 aut 
700 1 |a Ruckel, Alexander  |e verfasserin  |4 aut 
700 1 |a Rastegar, Sina  |e verfasserin  |4 aut 
700 1 |a Misal, Saurabh N  |e verfasserin  |4 aut 
700 1 |a Majidi, Leily  |e verfasserin  |4 aut 
700 1 |a Kumar, Khagesh  |e verfasserin  |4 aut 
700 1 |a Wang, Shuxi  |e verfasserin  |4 aut 
700 1 |a Guo, Jinglong  |e verfasserin  |4 aut 
700 1 |a Dawood, Radwa  |e verfasserin  |4 aut 
700 1 |a Lagunas, Francisco  |e verfasserin  |4 aut 
700 1 |a Parajuli, Prakash  |e verfasserin  |4 aut 
700 1 |a Ngo, Anh Tuan  |e verfasserin  |4 aut 
700 1 |a Curtiss, Larry A  |e verfasserin  |4 aut 
700 1 |a Cho, Sung Beom  |e verfasserin  |4 aut 
700 1 |a Cabana, Jordi  |e verfasserin  |4 aut 
700 1 |a Klie, Robert F  |e verfasserin  |4 aut 
700 1 |a Mishra, Rohan  |e verfasserin  |4 aut 
700 1 |a Salehi-Khojin, Amin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 26 vom: 15. Juli, Seite e1907041  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:26  |g day:15  |g month:07  |g pages:e1907041 
856 4 0 |u http://dx.doi.org/10.1002/adma.201907041  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 26  |b 15  |c 07  |h e1907041