Structural Properties of Inverted Hexagonal Phase : A Hybrid Computational and Experimental Approach

Inverted/reverse hexagonal (HII) phases are of special interest in several fields of research, including nanomedicine. We used molecular dynamics (MD) simulation to study HII systems composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoyloleoylphosphatidylethanolamine (POPE) at several hyd...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 24 vom: 23. Juni, Seite 6668-6680
1. Verfasser: Ramezanpour, M (VerfasserIn)
Weitere Verfasser: Schmidt, M L, Bashe, B Y M, Pruim, J R, Link, M L, Cullis, P R, Harper, P E, Thewalt, J L, Tieleman, D P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Lipid Bilayers Phosphatidylcholines Phosphatidylethanolamines
LEADER 01000naa a22002652 4500
001 NLM310194253
003 DE-627
005 20231225135546.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c00600  |2 doi 
028 5 2 |a pubmed24n1033.xml 
035 |a (DE-627)NLM310194253 
035 |a (NLM)32437159 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ramezanpour, M  |e verfasserin  |4 aut 
245 1 0 |a Structural Properties of Inverted Hexagonal Phase  |b A Hybrid Computational and Experimental Approach 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.06.2021 
500 |a Date Revised 21.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Inverted/reverse hexagonal (HII) phases are of special interest in several fields of research, including nanomedicine. We used molecular dynamics (MD) simulation to study HII systems composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoyloleoylphosphatidylethanolamine (POPE) at several hydration levels and temperatures. The effect of the hydration level on several HII structural parameters, including deuterium order parameters, was investigated. We further used MD simulations to estimate the maximum hydrations of DOPE and POPE HII lattices at several given temperatures. Finally, the effect of acyl chain unsaturation degree on the HII structure was studied via comparing the DOPE with POPE HII systems. In addition to MD simulations, we used deuterium nuclear magnetic resonance (2H NMR) and small-angle X-ray scattering (SAXS) experiments to measure the DOPE acyl chain order parameters, lattice plane distances, and the water core radius in HII phase DOPE samples at several temperatures in the presence of excess water. Structural parameters calculated from MD simulations are in excellent agreement with the experimental data. Dehydration decreases the radius of the water core. An increase in hydration level slightly increased the deuterium order parameter of lipids acyl chains, whereas an increase in temperature decreased it. Lipid cylinders undulated along the cylinder axis as a function of hydration level. The maximum hydration levels of PE HII phases at different temperatures were successfully predicted by MD simulations based on a single experimental measurement for the lattice plane distance in the presence of excess water. An increase in temperature decreases the maximum hydration and consequently the radius of the water core and lattice plane distances. Finally, DOPE formed HII structures with a higher curvature compared to POPE, as expected. We propose a general protocol for constructing computational HII systems that correspond to the experimental systems. This protocol could be used to study HII systems composed of molecules other than the PE systems used here and to improve and validate force field parameters by using the target data in the HII phase 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Lipid Bilayers  |2 NLM 
650 7 |a Phosphatidylcholines  |2 NLM 
650 7 |a Phosphatidylethanolamines  |2 NLM 
700 1 |a Schmidt, M L  |e verfasserin  |4 aut 
700 1 |a Bashe, B Y M  |e verfasserin  |4 aut 
700 1 |a Pruim, J R  |e verfasserin  |4 aut 
700 1 |a Link, M L  |e verfasserin  |4 aut 
700 1 |a Cullis, P R  |e verfasserin  |4 aut 
700 1 |a Harper, P E  |e verfasserin  |4 aut 
700 1 |a Thewalt, J L  |e verfasserin  |4 aut 
700 1 |a Tieleman, D P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 36(2020), 24 vom: 23. Juni, Seite 6668-6680  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:24  |g day:23  |g month:06  |g pages:6668-6680 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c00600  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 24  |b 23  |c 06  |h 6668-6680