Bioinspired Soft Microrobots with Precise Magneto-Collective Control for Microvascular Thrombolysis

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 26 vom: 20. Juli, Seite e2000366
1. Verfasser: Xie, Meihua (VerfasserIn)
Weitere Verfasser: Zhang, Wei, Fan, Chengying, Wu, Chu, Feng, Qishuai, Wu, Jiaojiao, Li, Yingze, Gao, Rui, Li, Zhenguang, Wang, Qigang, Cheng, Yu, He, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article collective behavior magnetic fields magnetotactic bacteria soft microrobots thrombolysis Biocompatible Materials Ferric Compounds Fibrinolytic Agents ferric oxide mehr... 1K09F3G675 Tissue Plasminogen Activator EC 3.4.21.68
Beschreibung
Zusammenfassung:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New-era soft microrobots for biomedical applications need to mimic the essential structures and collective functions of creatures from nature. Biocompatible interfaces, intelligent functionalities, and precise locomotion control in a collective manner are the key parameters to design soft microrobots for the complex bio-environment. In this work, a biomimetic magnetic microrobot (BMM) inspired by magnetotactic bacteria (MTB) with speedy motion response and accurate positioning is developed for targeted thrombolysis. Similar to the magnetosome structure in MTB, the BMM is composed of aligned iron oxide nanoparticle (MNP) chains embedded in a non-swelling microgel shell. Linear chains in BMMs are achieved due to the interparticle dipolar interactions of MNPs under a static magnetic field. Simulation results show that, the degree and speed of assembly is proportional to the field strength. The BMM achieves the maximum speed of 161.7 µm s-1 and accurate positioning control under a rotating magnetic field with less than 4% deviation. Importantly, the locomotion analyses of BMMs demonstrate the frequency-dependent synchronization under 8 Hz and asynchronization at higher frequencies due to the increased drag torque. The BMMs can deliver and release thrombolytic drugs via magneto-collective control, which is promising for ultra-minimal invasive thrombolysis
Beschreibung:Date Completed 03.05.2021
Date Revised 03.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202000366