Estimation of spatiotemporal trends in bat abundance from mortality data collected at wind turbines

© 2020 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 35(2021), 1 vom: 15. Feb., Seite 227-238
1. Verfasser: Davy, Christina M (VerfasserIn)
Weitere Verfasser: Squires, Kelly, Zimmerling, J Ryan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Bayesian hierarchical models population trends aeroconservación aeroconservation aeroecology aeroecología bat mortality energía eólica energía renovable modelos de jerarquía bayesiana mehr... mortalidad en murciélagos renewable energy tendencias poblacionales wind energy 可再生能源、 种群趋势、 航空保护、 航空生态、 蝙蝠死亡量、 贝叶斯层次模型、 风能
LEADER 01000caa a22002652 4500
001 NLM310074908
003 DE-627
005 20240331232117.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.13554  |2 doi 
028 5 2 |a pubmed24n1358.xml 
035 |a (DE-627)NLM310074908 
035 |a (NLM)32424911 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Davy, Christina M  |e verfasserin  |4 aut 
245 1 0 |a Estimation of spatiotemporal trends in bat abundance from mortality data collected at wind turbines 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.04.2021 
500 |a Date Revised 31.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 
520 |a Renewable energy sources, such as wind energy, are essential tools for reducing the causes of climate change, but wind turbines can pose a collision risk for bats. To date, the population-level effects of wind-related mortality have been estimated for only 1 bat species. To estimate temporal trends in bat abundance, we considered wind turbines as opportunistic sampling tools for flying bats (analogous to fishing nets), where catch per unit effort (carcass abundance per monitored turbine) is a proxy for aerial abundance of bats, after accounting for seasonal variation in activity. We used a large, standardized data set of records of bat carcasses from 594 turbines in southern Ontario, Canada, and corrected these data to account for surveyor efficiency and scavenger removal. We used Bayesian hierarchical models to estimate temporal trends in aerial abundance of bats and to explore the effect of spatial factors, including landscape features associated with bat habitat (e.g., wetlands, croplands, and forested lands), on the number of mortalities for each species. The models showed a rapid decline in the abundance of 4 species in our study area; declines in capture of carcasses over 7 years ranged from 65% (big brown bat [Eptesicus fuscus]) to 91% (silver-haired bat [Lasionycteris noctivagans]). Estimated declines were independent of the effects of mitigation (increasing wind speed at which turbines begin to generate electricity from 3.5 to 5.5 m/s), which significantly reduced but did not eliminate bat mortality. Late-summer mortality of hoary (Lasiurus cinereus), eastern red (Lasiurus borealis), and silver-haired bats was predicted by woodlot cover, and mortality of big brown bats decreased with increasing elevation. These landscape predictors of bat mortality can inform the siting of future wind energy operations. Our most important result is the apparent decline in abundance of four common species of bat in the airspace, which requires further investigation 
650 4 |a Journal Article 
650 4 |a Bayesian hierarchical models population trends 
650 4 |a aeroconservación 
650 4 |a aeroconservation 
650 4 |a aeroecology 
650 4 |a aeroecología 
650 4 |a bat mortality 
650 4 |a energía eólica 
650 4 |a energía renovable 
650 4 |a modelos de jerarquía bayesiana 
650 4 |a mortalidad en murciélagos 
650 4 |a renewable energy 
650 4 |a tendencias poblacionales 
650 4 |a wind energy 
650 4 |a 可再生能源、 
650 4 |a 种群趋势、 
650 4 |a 航空保护、 
650 4 |a 航空生态、 
650 4 |a 蝙蝠死亡量、 
650 4 |a 贝叶斯层次模型、 
650 4 |a 风能 
700 1 |a Squires, Kelly  |e verfasserin  |4 aut 
700 1 |a Zimmerling, J Ryan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1999  |g 35(2021), 1 vom: 15. Feb., Seite 227-238  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnns 
773 1 8 |g volume:35  |g year:2021  |g number:1  |g day:15  |g month:02  |g pages:227-238 
856 4 0 |u http://dx.doi.org/10.1111/cobi.13554  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2021  |e 1  |b 15  |c 02  |h 227-238