Amorphous High-Surface-Area Aluminum Hydroxide-Bicarbonates for Highly Efficient Methyl Orange Removal from Water

Amorphous high-surface-area aluminum hydroxide-bicarbonates were synthesized starting from AlCl3, base, and bicarbonate in water. Composites with a chemical formulas of [Al13O4(μ-OH)24(H2O)6.5(OH)5.5](HCO3)1.5 (I-NaOH) and [Al13O4(μ-OH)24(H2O)6(OH)6](HCO3) (I-NH3) were obtained by the use of NaOH/Na...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 36(2020), 22 vom: 09. Juni, Seite 6277-6285
1. Verfasser: Kinoshita, Yuki (VerfasserIn)
Weitere Verfasser: Shimoyama, Yuto, Masui, Yoichi, Kawahara, Yoshiteru, Arai, Kenji, Motohashi, Teruki, Noda, Yasuto, Uchida, Sayaka
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM310058201
003 DE-627
005 20231225135252.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c00021  |2 doi 
028 5 2 |a pubmed24n1033.xml 
035 |a (DE-627)NLM310058201 
035 |a (NLM)32423218 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kinoshita, Yuki  |e verfasserin  |4 aut 
245 1 0 |a Amorphous High-Surface-Area Aluminum Hydroxide-Bicarbonates for Highly Efficient Methyl Orange Removal from Water 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.06.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Amorphous high-surface-area aluminum hydroxide-bicarbonates were synthesized starting from AlCl3, base, and bicarbonate in water. Composites with a chemical formulas of [Al13O4(μ-OH)24(H2O)6.5(OH)5.5](HCO3)1.5 (I-NaOH) and [Al13O4(μ-OH)24(H2O)6(OH)6](HCO3) (I-NH3) were obtained by the use of NaOH/NaHCO3 and NH3/NH4HCO3 as base/bicarbonate, respectively. The surface area of the composites was highly dependent on the pH level of the synthetic solution, and composites with high surface areas (ca. 200 m2 g-1) were obtained around pH 7-8. Pore-size distributions determined from the N2 adsorption isotherms showed that I-NH3 and I-NaOH possess mainly large (pore radius rp > 3 nm) and small (rp < 3 nm) pores, respectively, despite similar surface areas. While SEM images showed that both I-NH3 and I-NaOH were aggregates of nanoparticles, the particles were more fused in I-NaOH, which is in line with the existence of small pores and the use of a stronger base (NaOH), which would facilitate the dehydration condensation reaction. The composites were applied as adsorbents to remove methyl orange (MO) from water. The time course of MO adsorption was readily fitted with a pseudo-second-order model, and over 90% MO removal was attained within 10 min with I-NH3, while I-NaOH showed much less MO removal (26%). The MO adsorption isotherm of I-NH3 was reproduced with a Langmuir model with an adsorption capacity of 154 mg g-1. Notably, the aluminum hydroxide-bicarbonates could not absorb methylene blue, which is a cationic dye, while anions (MO and PO43-) were readily absorbed. Solid-state 27Al MAS NMR spectra showed that the concentration of 5-coordinated aluminum species, which may serve as guest binding sites, was higher for I-NH3. These results show that electrostatic interaction between anionic MO and coordinatively unsaturated 5-coordinated cationic aluminum species and the large external surface area of I-NH3 contribute to the highly efficient MO adsorption 
650 4 |a Journal Article 
700 1 |a Shimoyama, Yuto  |e verfasserin  |4 aut 
700 1 |a Masui, Yoichi  |e verfasserin  |4 aut 
700 1 |a Kawahara, Yoshiteru  |e verfasserin  |4 aut 
700 1 |a Arai, Kenji  |e verfasserin  |4 aut 
700 1 |a Motohashi, Teruki  |e verfasserin  |4 aut 
700 1 |a Noda, Yasuto  |e verfasserin  |4 aut 
700 1 |a Uchida, Sayaka  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 36(2020), 22 vom: 09. Juni, Seite 6277-6285  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:22  |g day:09  |g month:06  |g pages:6277-6285 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c00021  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 22  |b 09  |c 06  |h 6277-6285