Metal-Free Hydrogen-Bonded Polymers Mimic Noble Metal Electrocatalysts

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 25 vom: 20. Juni, Seite e1902177
1. Verfasser: Coskun, Halime (VerfasserIn)
Weitere Verfasser: Aljabour, Abdalaziz, de Luna, Phil, Sun, He, Nishiumi, Nobuyuki, Yoshida, Tsukasa, Koller, Georg, Ramsey, Michael G, Greunz, Theresia, Stifter, David, Strobel, Moritz, Hild, Sabine, Hassel, Achim Walter, Sariciftci, Niyazi Serdar, Sargent, Edward H, Stadler, Philipp
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article conducting polymers electrocatalysis hydrogen bonds hydrogen evolution reaction polydopamine
Beschreibung
Zusammenfassung:© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The most active and efficient catalysts for the electrochemical hydrogen evolution reaction (HER) rely on platinum, a fact that increases the cost of producing hydrogen and thereby limits the widespread adoption of this fuel. Here, a metal-free organic electrocatalyst that mimics the platinum surface by implementing a high work function and incorporating hydrogen-affine hydrogen bonds is introduced. These motifs, inspired from enzymology, are deployed here as selective reaction centres. It is shown that the keto-amine hydrogen-bond motif enhances the rate-determining step in proton reduction to molecular hydrogen. The keto-amine-functionalized polymers reported herein evolve hydrogen at an overpotential of 190 mV. They share certain key properties with platinum: a similar work function and excellent electrochemical stability and chemical robustness. These properties allow the demonstration of one week of continuous HER operation without notable degradation nor delamination from the carrier electrode. Scaled continuous-flow electrolysis is reported and 1 L net molecular hydrogen is produced within less than 9 h using 2.3 mg of polymer electrocatalyst
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201902177