Structured Dictionary Learning for Image Denoising under Mixed Gaussian and Impulse Noise

Although image denoising as a basic task of image restoration has been widely studied in the past decades, there are not many studies on mixed noise denoising. In this paper, we propose two structured dictionary learning models to recover images corrupted by mixed Gaussian and impulse noise. These t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 12. Mai
1. Verfasser: Zhu, Hong (VerfasserIn)
Weitere Verfasser: Ng, Michael K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM309896878
003 DE-627
005 20240229162855.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2992895  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM309896878 
035 |a (NLM)32406836 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Hong  |e verfasserin  |4 aut 
245 1 0 |a Structured Dictionary Learning for Image Denoising under Mixed Gaussian and Impulse Noise 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Although image denoising as a basic task of image restoration has been widely studied in the past decades, there are not many studies on mixed noise denoising. In this paper, we propose two structured dictionary learning models to recover images corrupted by mixed Gaussian and impulse noise. These two models can be merged as ℓp-norm fidelity plus ℓq-norm regularization. The fidelity term is used to fit image patches and the regularization term is employed for sparse coding. Particularly, we utilize proximal (and proximal linearized) alternating minimization methods as the main solvers to deal with these two models. We remove the Gaussian noise under the assumption that the uncorrupted image can be approximated with a linear representation under an appropriate orthogonal basis. We use different ways to remove impulse noise for these two models. The experimental results are reported to compare the existing methods and demonstrate the performance of the proposed denoising model is better than the other existing methods in terms of some quality assessment metrics 
650 4 |a Journal Article 
700 1 |a Ng, Michael K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 12. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:12  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2992895  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 12  |c 05