In Situ Formation of Oxygen Vacancies Achieving Near-Complete Charge Separation in Planar BiVO4 Photoanodes

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 26 vom: 01. Juli, Seite e2001385
Auteur principal: Wang, Songcan (Auteur)
Autres auteurs: He, Tianwei, Chen, Peng, Du, Aijun, Ostrikov, Kostya Ken, Huang, Wei, Wang, Lianzhou
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article bismuth vanadate charge separation oxygen vacancies photoanodes water splitting
Description
Résumé:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Despite a suitable bandgap of bismuth vanadate (BiVO4 ) for visible light absorption, most of the photogenerated holes in BiVO4 photoanodes are vanished before reaching the surfaces for oxygen evolution reaction due to the poor charge separation efficiency in the bulk. Herein, a new sulfur oxidation strategy is developed to prepare planar BiVO4 photoanodes with in situ formed oxygen vacancies, which increases the majority charge carrier density and photovoltage, leading to a record charge separation efficiency of 98.2% among the reported BiVO4 photoanodes. Upon loading NiFeOx as an oxygen evolution cocatalyst, a stable photocurrent density of 5.54 mA cm-2 is achieved at 1.23 V versus the reversible hydrogen electrode (RHE) under AM 1.5 G illumination. Remarkably, a dual-photoanode configuration further enhances the photocurrent density up to 6.24 mA cm-2 , achieving an excellent applied bias photon-to-current efficiency of 2.76%. This work demonstrates a simple thermal treatment approach to generate oxygen vacancies for the design of efficient planar photoanodes for solar hydrogen production
Description:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202001385