Influences of Hydrogen Bonding-Based Stabilization of Bolaamphiphile Layers on Molecular Diffusion within Organic Nanotubes Having Inner Carboxyl Groups

This paper reports molecular diffusion behavior in two bolaamphiphile-based organic nanotubes having inner carboxyl groups with different inner dimeters (10 and 20 nm) and wall structures, COOH-ONT10nm and COOH-ONT20nm, using imaging fluorescence correlation spectroscopy (imaging FCS). The results w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 22 vom: 09. Juni, Seite 6145-6153
1. Verfasser: Ghimire, Govinda (VerfasserIn)
Weitere Verfasser: Moore, Mikaela M, Leuschen, Rebecca, Nagasaka, Shinobu, Kameta, Naohiro, Masuda, Mitsutoshi, Higgins, Daniel A, Ito, Takashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM309797845
003 DE-627
005 20231225134713.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c00556  |2 doi 
028 5 2 |a pubmed24n1032.xml 
035 |a (DE-627)NLM309797845 
035 |a (NLM)32396729 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ghimire, Govinda  |e verfasserin  |4 aut 
245 1 0 |a Influences of Hydrogen Bonding-Based Stabilization of Bolaamphiphile Layers on Molecular Diffusion within Organic Nanotubes Having Inner Carboxyl Groups 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.09.2020 
500 |a Date Revised 02.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper reports molecular diffusion behavior in two bolaamphiphile-based organic nanotubes having inner carboxyl groups with different inner dimeters (10 and 20 nm) and wall structures, COOH-ONT10nm and COOH-ONT20nm, using imaging fluorescence correlation spectroscopy (imaging FCS). The results were compared to those previously obtained in a similar nanotube with inner amine groups (NH2-ONT10nm). COOH-ONT10nm, as with NH2-ONT10nm, were formed from a rolled bolaamphiphile layer incorporating triglycine moieties, whereas COOH-ONT20nm consisted of four stacks of triglycine-free bolaamphiphile layers. Imaging FCS measurements were carried out for anionic sulforhodamine B (SRB), zwitterionic/cationic rhodamine B (RB), and cationic rhodamine-123 (R123) diffusing within ONTs (1-9 μm long) at different pH (3.4-8.4) and ionic strengths (1.6-500 mM). Diffusion coefficients (D) of these dyes in the ONTs were very small (0.01-0.1 μm2/s), reflecting the significant contributions of molecule-nanotube interactions to diffusion. The D of SRB was larger at higher pH and ionic strength, indicating the essential role of electrostatic repulsion that was enhanced by the deprotonation of the inner carboxyl groups. Importantly, the D of SRB was virtually independent of nanotube inner diameter and wall structure, indicating the diffusion of the hydrophilic molecule was controlled by short time scale adsorption/desorption processes onto the inner surface. In contrast, pH effects on D were less clear for relatively hydrophobic R123 and RB, suggesting the significant contributions of non-Coulombic interactions. Interestingly, the diffusion of these molecules in COOH-ONT20nm was slower than in COOH-ONT10nm. Slower diffusion in COOH-ONT20nm was attributable to relatively efficient partitioning of the hydrophobic dyes into the bolaamphiphile layers, which was reduced in COOH-ONT10nm due to the stabilization of its layer by polyglycine-II-type hydrogen bonding networks. These results show that, by tuning the bolaamphiphile structures and their intermolecular interactions, unique environments can be created within the nanospaces for enhanced molecular separations and reactions 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Moore, Mikaela M  |e verfasserin  |4 aut 
700 1 |a Leuschen, Rebecca  |e verfasserin  |4 aut 
700 1 |a Nagasaka, Shinobu  |e verfasserin  |4 aut 
700 1 |a Kameta, Naohiro  |e verfasserin  |4 aut 
700 1 |a Masuda, Mitsutoshi  |e verfasserin  |4 aut 
700 1 |a Higgins, Daniel A  |e verfasserin  |4 aut 
700 1 |a Ito, Takashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 36(2020), 22 vom: 09. Juni, Seite 6145-6153  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:22  |g day:09  |g month:06  |g pages:6145-6153 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c00556  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 22  |b 09  |c 06  |h 6145-6153