Light Field Synthesis by Training Deep Network in the Refocused Image Domain

Light field imaging, which captures spatial-angular information of light incident on image sensors, enables many interesting applications such as image refocusing and augmented reality. However, due to the limited sensor resolution, a trade-off exists between the spatial and angular resolutions. To...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 11. Mai
1. Verfasser: Liu, Chang-Le (VerfasserIn)
Weitere Verfasser: Shih, Kuang-Tsu, Huang, Jiun-Woei, Chen, Homer H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM309791928
003 DE-627
005 20240229162852.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2992354  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM309791928 
035 |a (NLM)32396091 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Chang-Le  |e verfasserin  |4 aut 
245 1 0 |a Light Field Synthesis by Training Deep Network in the Refocused Image Domain 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Light field imaging, which captures spatial-angular information of light incident on image sensors, enables many interesting applications such as image refocusing and augmented reality. However, due to the limited sensor resolution, a trade-off exists between the spatial and angular resolutions. To increase the angular resolution, view synthesis techniques have been adopted to generate new views from existing views. However, traditional learning-based view synthesis mainly considers the image quality of each view of the light field and neglects the quality of the refocused images. In this paper, we propose a new loss function called refocused image error (RIE) to address the issue. The main idea is that the image quality of the synthesized light field should be optimized in the refocused image domain because it is where the light field is viewed. We analyze the behavior of RIE in the spectral domain and test the performance of our approach against previous approaches on both real (INRIA) and software-rendered (HCI) light field datasets using objective assessment metrics such as MSE, MAE, PSNR, SSIM, and GMSD. Experimental results show that the light field generated by our method results in better refocused images than previous methods 
650 4 |a Journal Article 
700 1 |a Shih, Kuang-Tsu  |e verfasserin  |4 aut 
700 1 |a Huang, Jiun-Woei  |e verfasserin  |4 aut 
700 1 |a Chen, Homer H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 11. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:11  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2992354  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 11  |c 05