Shearlet Enhanced Snapshot Compressive Imaging

Snapshot compressive imaging (SCI) is a promising approach to capture high-dimensional data with low dimensional sensors. With modest modifications to off-the-shelf cameras, SCI cameras encode multiple frames into a single measurement frame. These correlated frames can then be retrieved by reconstru...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 06. Mai
1. Verfasser: Yang, Peihao (VerfasserIn)
Weitere Verfasser: Kong, Linghe, Liu, Xiao-Yang, Yuan, Xin, Chen, Guihai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM309693624
003 DE-627
005 20240229162840.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2989550  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM309693624 
035 |a (NLM)32386151 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Peihao  |e verfasserin  |4 aut 
245 1 0 |a Shearlet Enhanced Snapshot Compressive Imaging 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Snapshot compressive imaging (SCI) is a promising approach to capture high-dimensional data with low dimensional sensors. With modest modifications to off-the-shelf cameras, SCI cameras encode multiple frames into a single measurement frame. These correlated frames can then be retrieved by reconstruction algorithms. Existing reconstruction algorithms suffer from low speed or low fidelity. In this paper, we propose a novel reconstruction algorithm, namely, Shearlet enhanced Snapshot Compressive Imaging (SeSCI), which exploits the sparsity of the image representation in both frequency domain and shearlet domain. Towards this end, we first derive our SeSCI algorithm under the alternating direction method of multipliers (ADMM) framework. We then propose an efficient solution of SeSCI algorithm. Moreover, we prove that the improved SeSCI algorithm converges to a fixed point. Experimental results on both synthetic data and real data captured by SCI cameras demonstrate the significant advantages of SeSCI, which outperforms the conventional algorithms by more than 2dB in PSNR. At the same time, the SeSCI achieves a speed-up more than 100× over the state-of-the-art algorithm 
650 4 |a Journal Article 
700 1 |a Kong, Linghe  |e verfasserin  |4 aut 
700 1 |a Liu, Xiao-Yang  |e verfasserin  |4 aut 
700 1 |a Yuan, Xin  |e verfasserin  |4 aut 
700 1 |a Chen, Guihai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 06. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:06  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2989550  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 06  |c 05