Photomodulation of Charge Transport in All-Semiconducting 2D-1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 26 vom: 30. Juli, Seite e2001268
1. Verfasser: Liu, Zhaoyang (VerfasserIn)
Weitere Verfasser: Qiu, Haixin, Wang, Can, Chen, Zongping, Zyska, Björn, Narita, Akimitsu, Ciesielski, Artur, Hecht, Stefan, Chi, Lifeng, Müllen, Klaus, Samorì, Paolo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D semiconductors graphene nanoribbons persistent photoconductivity photomodulation van der Waals heterostructures
LEADER 01000naa a22002652 4500
001 NLM309615968
003 DE-627
005 20231225134315.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202001268  |2 doi 
028 5 2 |a pubmed24n1032.xml 
035 |a (DE-627)NLM309615968 
035 |a (NLM)32378243 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Zhaoyang  |e verfasserin  |4 aut 
245 1 0 |a Photomodulation of Charge Transport in All-Semiconducting 2D-1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Van der Waals heterostructures (VDWHs), obtained via the controlled assembly of 2D atomically thin crystals, exhibit unique physicochemical properties, rendering them prototypical building blocks to explore new physics and for applications in optoelectronics. As the emerging alternatives to graphene, monolayer transition metal dichalcogenides and bottom-up synthesized graphene nanoribbons (GNRs) are promising candidates for overcoming the shortcomings of graphene, such as the absence of a bandgap in its electronic structure, which is essential in optoelectronics. Herein, VDWHs comprising GNRs onto monolayer MoS2 are fabricated. Field-effect transistors (FETs) based on such VDWHs show an efficient suppression of the persistent photoconductivity typical of MoS2 , resulting from the interfacial charge transfer process. The MoS2 -GNR FETs exhibit drastically reduced hysteresis and more stable behavior in the transfer characteristics, which is a prerequisite for the further photomodulation of charge transport behavior within the MoS2 -GNR VDWHs. The physisorption of photochromic molecules onto the MoS2 -GNR VDWHs enables reversible light-driven control over charge transport. In particular, the drain current of the MoS2 -GNR FET can be photomodulated by 52%, without displaying significant fatigue over at least 10 cycles. Moreover, four distinguishable output current levels can be achieved, demonstrating the great potential of MoS2 -GNR VDWHs for multilevel memory devices 
650 4 |a Journal Article 
650 4 |a 2D semiconductors 
650 4 |a graphene nanoribbons 
650 4 |a persistent photoconductivity 
650 4 |a photomodulation 
650 4 |a van der Waals heterostructures 
700 1 |a Qiu, Haixin  |e verfasserin  |4 aut 
700 1 |a Wang, Can  |e verfasserin  |4 aut 
700 1 |a Chen, Zongping  |e verfasserin  |4 aut 
700 1 |a Zyska, Björn  |e verfasserin  |4 aut 
700 1 |a Narita, Akimitsu  |e verfasserin  |4 aut 
700 1 |a Ciesielski, Artur  |e verfasserin  |4 aut 
700 1 |a Hecht, Stefan  |e verfasserin  |4 aut 
700 1 |a Chi, Lifeng  |e verfasserin  |4 aut 
700 1 |a Müllen, Klaus  |e verfasserin  |4 aut 
700 1 |a Samorì, Paolo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 26 vom: 30. Juli, Seite e2001268  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:26  |g day:30  |g month:07  |g pages:e2001268 
856 4 0 |u http://dx.doi.org/10.1002/adma.202001268  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 26  |b 30  |c 07  |h e2001268