Conditional Variational Image Deraining

Image deraining is an important yet challenging image processing task. Though deterministic image deraining methods are developed with encouraging performance, they are infeasible to learn flexible representations for probabilistic inference and diverse predictions. Besides, rain intensity varies bo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 01. Mai
1. Verfasser: Du, Yingjun (VerfasserIn)
Weitere Verfasser: Xu, Jun, Zhen, Xiantong, Cheng, Ming-Ming, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM309486092
003 DE-627
005 20240229162829.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2990606  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM309486092 
035 |a (NLM)32365032 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Yingjun  |e verfasserin  |4 aut 
245 1 0 |a Conditional Variational Image Deraining 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Image deraining is an important yet challenging image processing task. Though deterministic image deraining methods are developed with encouraging performance, they are infeasible to learn flexible representations for probabilistic inference and diverse predictions. Besides, rain intensity varies both in spatial locations and across color channels, making this task more difficult. In this paper, we propose a Conditional Variational Image Deraining (CVID) network for better deraining performance, leveraging the exclusive generative ability of Conditional Variational Auto-Encoder (CVAE) on providing diverse predictions for the rainy image. To perform spatially adaptive deraining, we propose a spatial density estimation (SDE) module to estimate a rain density map for each image. Since rain density varies across different color channels, we also propose a channel-wise (CW) deraining scheme. Experiments on synthesized and real-world datasets show that the proposed CVID network achieves much better performance than previous deterministic methods on image deraining. Extensive ablation studies validate the effectiveness of the proposed SDE module and CW scheme in our CVID network. The code is available at https://github.com/Yingjun-Du/VID 
650 4 |a Journal Article 
700 1 |a Xu, Jun  |e verfasserin  |4 aut 
700 1 |a Zhen, Xiantong  |e verfasserin  |4 aut 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 01. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:01  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2990606  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 01  |c 05