Personalized Image Enhancement Using Neural Spline Color Transforms

In this work we present SpliNet, a novel CNNbased method that estimates a global color transform for the enhancement of raw images. The method is designed to improve the perceived quality of the images by reproducing the ability of an expert in the field of photo editing. The transformation applied...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 01. Mai
1. Verfasser: Bianco, Simone (VerfasserIn)
Weitere Verfasser: Cusano, Claudio, Piccoli, Flavio, Schettini, Raimondo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM309486025
003 DE-627
005 20240229162829.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2989584  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM309486025 
035 |a (NLM)32365026 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bianco, Simone  |e verfasserin  |4 aut 
245 1 0 |a Personalized Image Enhancement Using Neural Spline Color Transforms 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In this work we present SpliNet, a novel CNNbased method that estimates a global color transform for the enhancement of raw images. The method is designed to improve the perceived quality of the images by reproducing the ability of an expert in the field of photo editing. The transformation applied to the input image is found by a convolutional neural network specifically trained for this purpose. More precisely, the network takes as input a raw image and produces as output one set of control points for each of the three color channels. Then, the control points are interpolated with natural cubic splines and the resulting functions are globally applied to the values of the input pixels to produce the output image. Experimental results compare favorably against recent methods in the state of the art on the MIT-Adobe FiveK dataset. Furthermore, we also propose an extension of the SpliNet in which a single neural network is used to model the style of multiple reference retouchers by embedding them into a user space. The style of new users can be reproduced without retraining the network, after a quick modeling stage in which they are positioned in the user space on the basis of their preferences on a very small set of retouched images 
650 4 |a Journal Article 
700 1 |a Cusano, Claudio  |e verfasserin  |4 aut 
700 1 |a Piccoli, Flavio  |e verfasserin  |4 aut 
700 1 |a Schettini, Raimondo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 01. Mai  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:01  |g month:05 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2989584  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 01  |c 05