AP-Loss for Accurate One-Stage Object Detection

One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously, with the former suffering much from extreme foreground-background class imbalance issue due to the large number of anchors. This paper alleviates this issue by proposing a novel framework t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 11 vom: 01. Nov., Seite 3782-3798
1. Verfasser: Chen, Kean (VerfasserIn)
Weitere Verfasser: Lin, Weiyao, Li, Jianguo, See, John, Wang, Ji, Zou, Junni
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM309485932
003 DE-627
005 20231225134022.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.2991457  |2 doi 
028 5 2 |a pubmed24n1031.xml 
035 |a (DE-627)NLM309485932 
035 |a (NLM)32365016 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Kean  |e verfasserin  |4 aut 
245 1 0 |a AP-Loss for Accurate One-Stage Object Detection 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously, with the former suffering much from extreme foreground-background class imbalance issue due to the large number of anchors. This paper alleviates this issue by proposing a novel framework to replace the classification task in one-stage detectors with a ranking task, and adopting the average-precision loss (AP-loss) for the ranking problem. Due to its non-differentiability and non-convexity, the AP-loss cannot be optimized directly. For this purpose, we develop a novel optimization algorithm, which seamlessly combines the error-driven update scheme in perceptron learning and backpropagation algorithm in deep networks. We provide in-depth analyses on the good convergence property and computational complexity of the proposed algorithm, both theoretically and empirically. Experimental results demonstrate notable improvement in addressing the imbalance issue in object detection over existing AP-based optimization algorithms. An improved state-of-the-art performance is achieved in one-stage detectors based on AP-loss over detectors using classification-losses on various standard benchmarks. The proposed framework is also highly versatile in accommodating different network architectures. Code is available at https://github.com/cccorn/AP-loss 
650 4 |a Journal Article 
700 1 |a Lin, Weiyao  |e verfasserin  |4 aut 
700 1 |a Li, Jianguo  |e verfasserin  |4 aut 
700 1 |a See, John  |e verfasserin  |4 aut 
700 1 |a Wang, Ji  |e verfasserin  |4 aut 
700 1 |a Zou, Junni  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 11 vom: 01. Nov., Seite 3782-3798  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:11  |g day:01  |g month:11  |g pages:3782-3798 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.2991457  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 11  |b 01  |c 11  |h 3782-3798