NMR spectroscopy goes mobile : Using NMR as process analytical technology at the fume hood

© 2020 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 58(2020), 12 vom: 08. Dez., Seite 1193-1202
1. Verfasser: Lee, William G (VerfasserIn)
Weitere Verfasser: Zell, Mark T, Ouchi, Takashi, Milton, Mark J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Flow-IR benchtop NMR low-field NMR process analytical technology reaction monitoring
Beschreibung
Zusammenfassung:© 2020 John Wiley & Sons, Ltd.
Nuclear magnetic resonance (NMR) is potentially a very powerful process analytical technology (PAT) tool as it gives an atomic resolution picture of the reaction mixture without the need for chromatography. NMR is well suited for interrogating transient intermediates, providing kinetic information via NMR active nuclei, and most importantly provides universally quantitative information for all species in solution. This contrasts with commonly used PAT instruments, such as Raman or Flow-infrared (IR), which requires a separate calibration curve for every component of the reaction mixture. To date, the large footprint of high-field (≥400 MHz) NMR spectrometers and the immobility of superconducting magnets, coupled with strict requirements for the architecture for the room it is to be installed, have been a major obstacle to using this technology right next to fume hoods where chemists perform synthetic work. Here, we describe the use of a small, lightweight 60 MHz Benchtop NMR system (Nanalysis Pro-60) located on a mobile platform, that was used to monitor both small and intermediate scale Grignard formation and coupling reactions. We also show how low field NMR can provide a deceptively simple yes/no answer (for a system that would otherwise require laborious off-line testing) in the enrichment of one component versus another in a kilogram scale distillation. Benchtop NMR was also used to derive molecule specific information from Flow-IR, a technology found in most manufacturing sites, and compare the ease at which the concentrations of the reaction mixtures can be derived by NMR versus IR
Beschreibung:Date Completed 01.04.2021
Date Revised 01.04.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.5035