Maximum Density Divergence for Domain Adaptation

Unsupervised domain adaptation addresses the problem of transferring knowledge from a well-labeled source domain to an unlabeled target domain where the two domains have distinctive data distributions. Thus, the essence of domain adaptation is to mitigate the distribution divergence between the two...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 11 vom: 01. Nov., Seite 3918-3930
1. Verfasser: Li, Jingjing (VerfasserIn)
Weitere Verfasser: Chen, Erpeng, Ding, Zhengming, Zhu, Lei, Lu, Ke, Shen, Heng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM309404096
003 DE-627
005 20231225133833.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.2991050  |2 doi 
028 5 2 |a pubmed24n1031.xml 
035 |a (DE-627)NLM309404096 
035 |a (NLM)32356736 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jingjing  |e verfasserin  |4 aut 
245 1 0 |a Maximum Density Divergence for Domain Adaptation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised domain adaptation addresses the problem of transferring knowledge from a well-labeled source domain to an unlabeled target domain where the two domains have distinctive data distributions. Thus, the essence of domain adaptation is to mitigate the distribution divergence between the two domains. The state-of-the-art methods practice this very idea by either conducting adversarial training or minimizing a metric which defines the distribution gaps. In this paper, we propose a new domain adaptation method named adversarial tight match (ATM) which enjoys the benefits of both adversarial training and metric learning. Specifically, at first, we propose a novel distance loss, named maximum density divergence (MDD), to quantify the distribution divergence. MDD minimizes the inter-domain divergence ("match" in ATM) and maximizes the intra-class density ("tight" in ATM). Then, to address the equilibrium challenge issue in adversarial domain adaptation, we consider leveraging the proposed MDD into adversarial domain adaptation framework. At last, we tailor the proposed MDD as a practical learning loss and report our ATM. Both empirical evaluation and theoretical analysis are reported to verify the effectiveness of the proposed method. The experimental results on four benchmarks, both classical and large-scale, show that our method is able to achieve new state-of-the-art performance on most evaluations 
650 4 |a Journal Article 
700 1 |a Chen, Erpeng  |e verfasserin  |4 aut 
700 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
700 1 |a Zhu, Lei  |e verfasserin  |4 aut 
700 1 |a Lu, Ke  |e verfasserin  |4 aut 
700 1 |a Shen, Heng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 11 vom: 01. Nov., Seite 3918-3930  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:11  |g day:01  |g month:11  |g pages:3918-3930 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.2991050  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 11  |b 01  |c 11  |h 3918-3930