Machine learning predicts large scale declines in native plant phylogenetic diversity

© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.

Détails bibliographiques
Publié dans:The New phytologist. - 1984. - 227(2020), 5 vom: 15. Sept., Seite 1544-1556
Auteur principal: Park, Daniel S (Auteur)
Autres auteurs: Willis, Charles G, Xi, Zhenxiang, Kartesz, John T, Davis, Charles C, Worthington, Steven
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:The New phytologist
Sujets:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. artificial intelligence biodiversity climate change machine learning phylogenetic diversity vascular plants
LEADER 01000caa a22002652c 4500
001 NLM309233526
003 DE-627
005 20250227051116.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.16621  |2 doi 
028 5 2 |a pubmed25n1030.xml 
035 |a (DE-627)NLM309233526 
035 |a (NLM)32339295 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Daniel S  |e verfasserin  |4 aut 
245 1 0 |a Machine learning predicts large scale declines in native plant phylogenetic diversity 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.05.2021 
500 |a Date Revised 14.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. 
520 |a Though substantial effort has gone into predicting how global climate change will impact biodiversity patterns, the scarcity of taxon-specific information has hampered the efficacy of these endeavors. Further, most studies analyzing spatiotemporal patterns of biodiversity focus narrowly on species richness. We apply machine learning approaches to a comprehensive vascular plant database for the United States and generate predictive models of regional plant taxonomic and phylogenetic diversity in response to a wide range of environmental variables. We demonstrate differences in predicted patterns and potential drivers of native vs nonnative biodiversity. In particular, native phylogenetic diversity is likely to decrease over the next half century despite increases in species richness. We also identify that patterns of taxonomic diversity can be incongruent with those of phylogenetic diversity. The combination of macro-environmental factors that determine diversity likely varies at continental scales; thus, as climate change alters the combinations of these factors across the landscape, the collective effect on regional diversity will also vary. Our study represents one of the most comprehensive examinations of plant diversity patterns to date and demonstrates that our ability to predict future diversity may benefit tremendously from the application of machine learning 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a artificial intelligence 
650 4 |a biodiversity 
650 4 |a climate change 
650 4 |a machine learning 
650 4 |a phylogenetic diversity 
650 4 |a vascular plants 
700 1 |a Willis, Charles G  |e verfasserin  |4 aut 
700 1 |a Xi, Zhenxiang  |e verfasserin  |4 aut 
700 1 |a Kartesz, John T  |e verfasserin  |4 aut 
700 1 |a Davis, Charles C  |e verfasserin  |4 aut 
700 1 |a Worthington, Steven  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1984  |g 227(2020), 5 vom: 15. Sept., Seite 1544-1556  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnas 
773 1 8 |g volume:227  |g year:2020  |g number:5  |g day:15  |g month:09  |g pages:1544-1556 
856 4 0 |u http://dx.doi.org/10.1111/nph.16621  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 227  |j 2020  |e 5  |b 15  |c 09  |h 1544-1556