Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil

© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 6 vom: 19. Juni, Seite 3658-3676
1. Verfasser: Kelland, Mike E (VerfasserIn)
Weitere Verfasser: Wade, Peter W, Lewis, Amy L, Taylor, Lyla L, Sarkar, Binoy, Andrews, M Grace, Lomas, Mark R, Cotton, T E Anne, Kemp, Simon J, James, Rachael H, Pearce, Christopher R, Hartley, Sue E, Hodson, Mark E, Leake, Jonathan R, Banwart, Steven A, Beerling, David J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article carbon removal crop productivity mineral weathering negative emissions technology reactive transport modelling silicon soil acidification Dust Silicates mehr... Soil basalt Carbon Dioxide 142M471B3J
LEADER 01000naa a22002652 4500
001 NLM308989589
003 DE-627
005 20231225132926.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15089  |2 doi 
028 5 2 |a pubmed24n1029.xml 
035 |a (DE-627)NLM308989589 
035 |a (NLM)32314496 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kelland, Mike E  |e verfasserin  |4 aut 
245 1 0 |a Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.09.2020 
500 |a Date Revised 15.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits for agriculture, require experimental and field evaluation. Here we report that amending a UK clay-loam agricultural soil with a high loading (10 kg/m2 ) of relatively coarse-grained crushed basalt significantly increased the yield (21 ± 9.4%, SE) of the important C4 cereal Sorghum bicolor under controlled environmental conditions, without accumulation of potentially toxic trace elements in the seeds. Yield increases resulted from the basalt treatment after 120 days without P- and K-fertilizer addition. Shoot silicon concentrations also increased significantly (26 ± 5.4%, SE), with potential benefits for crop resistance to biotic and abiotic stress. Elemental budgets indicate substantial release of base cations important for inorganic carbon removal and their accumulation mainly in the soil exchangeable pools. Geochemical reactive transport modelling, constrained by elemental budgets, indicated CO2 sequestration rates of 2-4 t CO2 /ha, 1-5 years after a single application of basaltic rock dust, including via newly formed soil carbonate minerals whose long-term fate requires assessment through field trials. This represents an approximately fourfold increase in carbon capture compared to control plant-soil systems without basalt. Our results build support for ERW deployment as a CDR technique compatible with spreading basalt powder on acidic loamy soils common across millions of hectares of western European and North American agriculture 
650 4 |a Journal Article 
650 4 |a carbon removal 
650 4 |a crop productivity 
650 4 |a mineral weathering 
650 4 |a negative emissions technology 
650 4 |a reactive transport modelling 
650 4 |a silicon 
650 4 |a soil acidification 
650 7 |a Dust  |2 NLM 
650 7 |a Silicates  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a basalt  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
700 1 |a Wade, Peter W  |e verfasserin  |4 aut 
700 1 |a Lewis, Amy L  |e verfasserin  |4 aut 
700 1 |a Taylor, Lyla L  |e verfasserin  |4 aut 
700 1 |a Sarkar, Binoy  |e verfasserin  |4 aut 
700 1 |a Andrews, M Grace  |e verfasserin  |4 aut 
700 1 |a Lomas, Mark R  |e verfasserin  |4 aut 
700 1 |a Cotton, T E Anne  |e verfasserin  |4 aut 
700 1 |a Kemp, Simon J  |e verfasserin  |4 aut 
700 1 |a James, Rachael H  |e verfasserin  |4 aut 
700 1 |a Pearce, Christopher R  |e verfasserin  |4 aut 
700 1 |a Hartley, Sue E  |e verfasserin  |4 aut 
700 1 |a Hodson, Mark E  |e verfasserin  |4 aut 
700 1 |a Leake, Jonathan R  |e verfasserin  |4 aut 
700 1 |a Banwart, Steven A  |e verfasserin  |4 aut 
700 1 |a Beerling, David J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 6 vom: 19. Juni, Seite 3658-3676  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:6  |g day:19  |g month:06  |g pages:3658-3676 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15089  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 6  |b 19  |c 06  |h 3658-3676