High-ISO Long-Exposure Image Denoising Based on Quantitative Blob Characterization
Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 14. Apr. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while yielding a quantitative measurement of the position, prominence and scale of blobs, which can facilitate the tasks of blob reconstruction and blob reduction. Subsequently, we propose a denoising scheme to address high-ISO long-exposure noise, which sometimes spatially shows a blob appearance, employing a blob reduction procedure as a cheap preprocessing for conventional denoising methods. We apply the proposed denoising methods to real-world noisy images as well as standard images that are corrupted by real noise. The experimental results demonstrate the superiority of the proposed methods over state-of-the-art denoising methods |
---|---|
Beschreibung: | Date Revised 27.02.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2020.2986687 |