High-ISO Long-Exposure Image Denoising Based on Quantitative Blob Characterization

Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 14. Apr.
1. Verfasser: Wang, Gang (VerfasserIn)
Weitere Verfasser: Lopez-Molina, Carlos, De Baets, Bernard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while yielding a quantitative measurement of the position, prominence and scale of blobs, which can facilitate the tasks of blob reconstruction and blob reduction. Subsequently, we propose a denoising scheme to address high-ISO long-exposure noise, which sometimes spatially shows a blob appearance, employing a blob reduction procedure as a cheap preprocessing for conventional denoising methods. We apply the proposed denoising methods to real-world noisy images as well as standard images that are corrupted by real noise. The experimental results demonstrate the superiority of the proposed methods over state-of-the-art denoising methods
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2020.2986687