Efficient and Effective Context-Based Convolutional Entropy Modeling for Image Compression

Precise estimation of the probabilistic structure of natural images plays an essential role in image compression. Despite the recent remarkable success of end-to-end optimized image compression, the latent codes are usually assumed to be fully statistically factorized in order to simplify entropy mo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 14. Apr.
1. Verfasser: Li, Mu (VerfasserIn)
Weitere Verfasser: Ma, Kede, You, Jane, Zhang, David, Zuo, Wangmeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM308907019
003 DE-627
005 20240229162748.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2985225  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM308907019 
035 |a (NLM)32305914 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Mu  |e verfasserin  |4 aut 
245 1 0 |a Efficient and Effective Context-Based Convolutional Entropy Modeling for Image Compression 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Precise estimation of the probabilistic structure of natural images plays an essential role in image compression. Despite the recent remarkable success of end-to-end optimized image compression, the latent codes are usually assumed to be fully statistically factorized in order to simplify entropy modeling. However, this assumption generally does not hold true and may hinder compression performance. Here we present contextbased convolutional networks (CCNs) for efficient and effective entropy modeling. In particular, a 3D zigzag scanning order and a 3D code dividing technique are introduced to define proper coding contexts for parallel entropy decoding, both of which boil down to place translation-invariant binary masks on convolution filters of CCNs. We demonstrate the promise of CCNs for entropy modeling in both lossless and lossy image compression. For the former, we directly apply a CCN to the binarized representation of an image to compute the Bernoulli distribution of each code for entropy estimation. For the latter, the categorical distribution of each code is represented by a discretized mixture of Gaussian distributions, whose parameters are estimated by three CCNs. We then jointly optimize the CCNbased entropy model along with analysis and synthesis transforms for rate-distortion performance. Experiments on the Kodak and Tecnick datasets show that our methods powered by the proposed CCNs generally achieve comparable compression performance to the state-of-the-art while being much faster 
650 4 |a Journal Article 
700 1 |a Ma, Kede  |e verfasserin  |4 aut 
700 1 |a You, Jane  |e verfasserin  |4 aut 
700 1 |a Zhang, David  |e verfasserin  |4 aut 
700 1 |a Zuo, Wangmeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 14. Apr.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:14  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2985225  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 14  |c 04