Large climate mitigation potential from adding trees to agricultural lands
© 2020 John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 26(2020), 8 vom: 02. Aug., Seite 4357-4365 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article agroforestry carbon storage climate change mitigation cropland land use pasture land Carbon 7440-44-0 |
Zusammenfassung: | © 2020 John Wiley & Sons Ltd. While improved management of agricultural landscapes is promoted as a promising natural climate solution, available estimates of the mitigation potential are based on coarse assessments of both agricultural extent and aboveground carbon density. Here we combine 30 meter resolution global maps of aboveground woody carbon, tree cover, and cropland extent, as well as a 1 km resolution map of global pasture land, to estimate the current and potential carbon storage of trees in nonforested portions of agricultural lands. We find that global croplands currently store 3.07 Pg of carbon (C) in aboveground woody biomass (i.e., trees) and pasture lands account for an additional 3.86 Pg C across a combined 3.76 billion ha. We then estimate the climate mitigation potential of multiple scenarios of integration and avoided loss of trees in crop and pasture lands based on region-specific biomass distributions. We evaluate our findings in the context of nationally determined contributions and find that the majority of potential carbon storage from integration and avoided loss of trees in crop and pasture lands is in countries that do not identify agroforestry as a climate mitigation technique |
---|---|
Beschreibung: | Date Completed 26.11.2020 Date Revised 26.11.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.15121 |