New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks

Copyright © 2020 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 107(2020) vom: 15. Apr., Seite 182-190
1. Verfasser: Wu, Fan (VerfasserIn)
Weitere Verfasser: Niu, Dongjie, Dai, Shijin, Wu, Boran
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Artificial neural network Cross prediction method MSW prediction Mainland China Predictor-exclusive method Regional difference Solid Waste
LEADER 01000naa a22002652 4500
001 NLM308839048
003 DE-627
005 20231225132612.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2020.04.015  |2 doi 
028 5 2 |a pubmed24n1029.xml 
035 |a (DE-627)NLM308839048 
035 |a (NLM)32299033 
035 |a (PII)S0956-053X(20)30175-6 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Fan  |e verfasserin  |4 aut 
245 1 0 |a New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2020 
500 |a Date Revised 21.05.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2020 Elsevier Ltd. All rights reserved. 
520 |a As one of the most popular non-linear models, artificial neural network (ANN) has been successfully applied in the prediction of municipal solid waste (MSW). Despite its high accuracy achieved in a specific city or region, little progress is made on a larger-scale, which would be resulted from the regional difference. In this study, ANN models for MSW prediction in mainland China are developed and optimized. Besides a model aiming for all cities, regional models are developed by grouping these cities into three categories. Impact of regional difference in MSW prediction is analyzed by evaluation of model's dependence on each predictor, and comparisons made between these models. Results show that regional difference has huge impact on MSW prediction. Accuracy of MSW prediction would increase from 0.916 in R2 and 59.3 in rooted mean squared error (RMSE) to 0.968/0.946/0.943 in R2 and 6.4/9.7/17.6 in RMSE for southern/northern/western region after a three-region division. Models for MSW prediction in southern and northern region of mainland China share much similarity in dependence on predictors, which differs a lot from that for western region. Further cross-prediction process confirmed that models for southern or northern regions might be suitable for the MSW prediction in another, yet not apply to that in western region. Such large-scale based model can be used by cities lacking historical data for prediction of their local MSW generation, the predictive result would be helpful in MSW disposal planning and the analysis of regional difference would be helpful in establishing regional policy, especially for the three regions in mainland China 
650 4 |a Journal Article 
650 4 |a Artificial neural network 
650 4 |a Cross prediction method 
650 4 |a MSW prediction 
650 4 |a Mainland China 
650 4 |a Predictor-exclusive method 
650 4 |a Regional difference 
650 7 |a Solid Waste  |2 NLM 
700 1 |a Niu, Dongjie  |e verfasserin  |4 aut 
700 1 |a Dai, Shijin  |e verfasserin  |4 aut 
700 1 |a Wu, Boran  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 107(2020) vom: 15. Apr., Seite 182-190  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:107  |g year:2020  |g day:15  |g month:04  |g pages:182-190 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2020.04.015  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 107  |j 2020  |b 15  |c 04  |h 182-190