|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM308811674 |
003 |
DE-627 |
005 |
20231225132537.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.chemmater.9b04845
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1029.xml
|
035 |
|
|
|a (DE-627)NLM308811674
|
035 |
|
|
|a (NLM)32296264
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Williamson, Benjamin A D
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 18.04.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Copyright © 2020 American Chemical Society.
|
520 |
|
|
|a Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO2 is an earth abundant, cheaper alternative to In2O3 as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In2O3. On the basis of the recent discovery of mobility and conductivity enhancements in In2O3 from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy, and semiconductor statistics modeling to understand what is the optimal dopant to maximize performance of SnO2-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO2, as it is a resonant dopant which is readily incorporated into SnO2 with the Ta 5d states sitting ∼1.4 eV above the conduction band minimum. Experimentally, the band edge electron effective mass of Ta doped SnO2 was shown to be 0.23m 0, compared to 0.29m 0 seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Featherstone, Thomas J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sathasivam, Sanjayan S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Swallow, Jack E N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shiel, Huw
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jones, Leanne A H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Smiles, Matthew J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Regoutz, Anna
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Tien-Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Xueming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Blackman, Christopher
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Thakur, Pardeep K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Carmalt, Claire J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Parkin, Ivan P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Veal, Tim D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Scanlon, David O
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Chemistry of materials : a publication of the American Chemical Society
|d 1998
|g 32(2020), 5 vom: 10. März, Seite 1964-1973
|w (DE-627)NLM098194763
|x 0897-4756
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:5
|g day:10
|g month:03
|g pages:1964-1973
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.chemmater.9b04845
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 5
|b 10
|c 03
|h 1964-1973
|