Modeling of Gas Transport through Polymer/MOF Interfaces : A Microsecond-Scale Concentration Gradient-Driven Molecular Dynamics Study

Copyright © 2020 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 32(2020), 3 vom: 11. Feb., Seite 1288-1296
1. Verfasser: Ozcan, Aydin (VerfasserIn)
Weitere Verfasser: Semino, Rocio, Maurin, Guillaume, Yazaydin, A Ozgur
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM308811658
003 DE-627
005 20231225132537.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.9b04907  |2 doi 
028 5 2 |a pubmed24n1029.xml 
035 |a (DE-627)NLM308811658 
035 |a (NLM)32296263 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ozcan, Aydin  |e verfasserin  |4 aut 
245 1 0 |a Modeling of Gas Transport through Polymer/MOF Interfaces  |b A Microsecond-Scale Concentration Gradient-Driven Molecular Dynamics Study 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.04.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2020 American Chemical Society. 
520 |a Membrane-based separation technologies offer a cost-effective alternative to many energy-intensive gas separation processes, such as distillation. Mixed matrix membranes (MMMs) composed of polymers and metal-organic frameworks (MOFs) have attracted a great deal of attention for being promising systems to manufacture durable and highly selective membranes with high gas fluxes and high selectivities. Therefore, understanding gas transport through these MMMs is of significant importance. There has been longstanding speculation that the gas diffusion behavior at the interface formed between the polymer matrix and MOF particles would strongly affect the global performance of the MMMs due to the potential presence of nonselective voids or other defects. To shed more light on this paradigm, we have performed microsecond long concentration gradient-driven molecular dynamics (CGD-MD) simulations that deliver an unprecedented microscopic picture of the transport of H2 and CH4 as single components and as a mixture in all regions of the PIM-1/ZIF-8 membrane, including the polymer/MOF interface. The fluxes of the permeating gases are computed and the impact of the polymer/MOF interface on the H2/CH4 permselectivity of the composite membrane is clearly revealed. Specifically, we show that the poor compatibility between PIM-1 and ZIF-8, which manifests itself by the presence of nonselective void spaces at their interface, results in a decrease of the H2/CH4 permselectivity for the corresponding composite membrane as compared to the performances simulated for PIM-1 and ZIF-8 individually. We demonstrate that CGD-MD simulations based on an accurate atomistic description of the polymer/MOF composite is a powerful tool for characterization and understanding of gas transport and separation mechanisms in MMMs 
650 4 |a Journal Article 
700 1 |a Semino, Rocio  |e verfasserin  |4 aut 
700 1 |a Maurin, Guillaume  |e verfasserin  |4 aut 
700 1 |a Yazaydin, A Ozgur  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 32(2020), 3 vom: 11. Feb., Seite 1288-1296  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:3  |g day:11  |g month:02  |g pages:1288-1296 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.9b04907  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 3  |b 11  |c 02  |h 1288-1296