STA-CNN : Convolutional Spatial-Temporal Attention Learning for Action Recognition

Convolutional Neural Networks have achieved excellent successes for object recognition in still images. However, the improvement of Convolutional Neural Networks over the traditional methods for recognizing actions in videos is not so significant, because the raw videos usually have much more redund...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 07. Apr.
1. Verfasser: Yang, Hao (VerfasserIn)
Weitere Verfasser: Yuan, Chunfeng, Zhang, Li, Sun, Yunda, Hu, Weiming, Maybank, Stephen J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM30860735X
003 DE-627
005 20240229162730.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2984904  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM30860735X 
035 |a (NLM)32275599 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Hao  |e verfasserin  |4 aut 
245 1 0 |a STA-CNN  |b Convolutional Spatial-Temporal Attention Learning for Action Recognition 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Convolutional Neural Networks have achieved excellent successes for object recognition in still images. However, the improvement of Convolutional Neural Networks over the traditional methods for recognizing actions in videos is not so significant, because the raw videos usually have much more redundant or irrelevant information than still images. In this paper, we propose a Spatial-Temporal Attentive Convolutional Neural Network (STA-CNN) which selects the discriminative temporal segments and focuses on the informative spatial regions automatically. The STA-CNN model incorporates a Temporal Attention Mechanism and a Spatial Attention Mechanism into a unified convolutional network to recognize actions in videos. The novel Temporal Attention Mechanism automatically mines the discriminative temporal segments from long and noisy videos. The Spatial Attention Mechanism firstly exploits the instantaneous motion information in optical flow features to locate the motion salient regions and it is then trained by an auxiliary classification loss with a Global Average Pooling layer to focus on the discriminative non-motion regions in the video frame. The STA-CNN model achieves the state-of-the-art performance on two of the most challenging datasets, UCF-101 (95.8%) and HMDB-51 (71.5%) 
650 4 |a Journal Article 
700 1 |a Yuan, Chunfeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Li  |e verfasserin  |4 aut 
700 1 |a Sun, Yunda  |e verfasserin  |4 aut 
700 1 |a Hu, Weiming  |e verfasserin  |4 aut 
700 1 |a Maybank, Stephen J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 07. Apr.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:07  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2984904  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 07  |c 04