Photorespiration-how is it regulated and how does it regulate overall plant metabolism?

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 14 vom: 06. Juli, Seite 3955-3965
1. Verfasser: Timm, Stefan (VerfasserIn)
Weitere Verfasser: Hagemann, Martin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Calvin–Benson cycle environmental acclimation flux control genetic engineering metabolic regulation photorespiration photosynthesis redox regulation thioredoxins mehr... Carbon Dioxide 142M471B3J Ribulose-Bisphosphate Carboxylase EC 4.1.1.39
LEADER 01000caa a22002652c 4500
001 NLM308596587
003 DE-627
005 20250227025539.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/eraa183  |2 doi 
028 5 2 |a pubmed25n1028.xml 
035 |a (DE-627)NLM308596587 
035 |a (NLM)32274517 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Timm, Stefan  |e verfasserin  |4 aut 
245 1 0 |a Photorespiration-how is it regulated and how does it regulate overall plant metabolism? 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.05.2021 
500 |a Date Revised 14.05.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Under the current atmospheric conditions, oxygenic photosynthesis requires photorespiration to operate. In the presence of low CO2/O2 ratios, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs an oxygenase side reaction, leading to the formation of high amounts of 2-phosphoglycolate during illumination. Given that 2-phosphoglycolate is a potent inhibitor of photosynthetic carbon fixation, it must be immediately removed through photorespiration. The core photorespiratory cycle is orchestrated across three interacting subcellular compartments, namely chloroplasts, peroxisomes, and mitochondria, and thus cross-talks with a multitude of other cellular processes. Over the past years, the metabolic interaction of photorespiration and photosynthetic CO2 fixation has attracted major interest because research has demonstrated the enhancement of C3 photosynthesis and growth through the genetic manipulation of photorespiration. However, to optimize future engineering approaches, it is also essential to improve our current understanding of the regulatory mechanisms of photorespiration. Here, we summarize recent progress regarding the steps that control carbon flux in photorespiration, eventually involving regulatory proteins and metabolites. In this regard, both genetic engineering and the identification of various layers of regulation point to glycine decarboxylase as the key enzyme to regulate and adjust the photorespiratory carbon flow. Potential implications of the regulation of photorespiration for acclimation to environmental changes along with open questions are also discussed 
650 4 |a Journal Article 
650 4 |a Calvin–Benson cycle 
650 4 |a environmental acclimation 
650 4 |a flux control 
650 4 |a genetic engineering 
650 4 |a metabolic regulation 
650 4 |a photorespiration 
650 4 |a photosynthesis 
650 4 |a redox regulation 
650 4 |a thioredoxins 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Ribulose-Bisphosphate Carboxylase  |2 NLM 
650 7 |a EC 4.1.1.39  |2 NLM 
700 1 |a Hagemann, Martin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 71(2020), 14 vom: 06. Juli, Seite 3955-3965  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnas 
773 1 8 |g volume:71  |g year:2020  |g number:14  |g day:06  |g month:07  |g pages:3955-3965 
856 4 0 |u http://dx.doi.org/10.1093/jxb/eraa183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 71  |j 2020  |e 14  |b 06  |c 07  |h 3955-3965