Purple acid phosphatase 10c encodes a major acid phosphatase that regulates plant growth under phosphate-deficient conditions in rice

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 71(2020), 14 vom: 06. Juli, Seite 4321-4332
Auteur principal: Deng, Suren (Auteur)
Autres auteurs: Lu, Linghong, Li, Jingyi, Du, Zezhen, Liu, Tongtong, Li, Wenjing, Xu, Fangsen, Shi, Lei, Shou, Huixia, Wang, Chuang
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Acid phosphatase Pi deficiency native promoter organic phosphate overexpression rice root Organophosphates plus... Phosphates Plant Proteins Phosphorus 27YLU75U4W purple acid phosphatase EC 3.1.3.- Acid Phosphatase EC 3.1.3.2
Description
Résumé:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Whilst constitutive overexpression of particular acid phosphatases (APases) can increase utilization of extracellular organic phosphate, negative effects are frequently observed in these transgenic plants under conditions of inorganic phosphate (Pi) sufficiency. In this study, we identified rice purple acid phosphatase 10c (OsPAP10c) as being a novel and major APase that exhibits activities associated both with the root surface and with secretion. Two constructs were used to generate the OsPAP10c-overexpression plants by driving its coding sequence with either a ubiquitin promoter (UP) or the OsPAP10c-native promoter (NP). Compared with the UP transgenic plants, lower expression levels and APase activities were observed in the NP plants. However, the UP and NP plants both showed a similar ability to degrade extracellular ATP and both promoted root growth. The growth performance and yield of the NP transgenic plants were better than the wild-type and UP plants in both hydroponic and field experiments irrespective of the level of Pi supply. Overexpression of APase by its native promoter therefore provides a potential way to improve crop production that might avoid increased APase activity in untargeted tissues and its inhibition of the growth of transgenic plants
Description:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa179