|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM308531841 |
003 |
DE-627 |
005 |
20231225131929.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.26207
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1028.xml
|
035 |
|
|
|a (DE-627)NLM308531841
|
035 |
|
|
|a (NLM)32267977
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Das, Prasenjit
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Encapsulation of Mg2 inside a C60 cage forms an electride
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 18.05.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley Periodicals, Inc.
|
520 |
|
|
|a Density functional theory (DFT) based calculations have been carried out for the endohedral encapsulation of magnesium dimer inside fullerene, that is, Mg2 C60 . It is observed that the minimum energy structure of the Mg2 @C60 system is C2h symmetry. The MgMg bond distance in the Mg2 @C60 system is much shorter than that in the free Mg2 and Mg2 2+ ion. The formation of the endohedral Mg2 @C60 system is thermochemically spontaneous in nature. The natural bond orbital (NBO) analysis showed the presence of an Mg2 2+ fragment with an MgMg bond inside the C60 cage. The electron density descriptors have identified the covalency in the MgMg bond. A non-nuclear attractor (NNA) is present in the middle of the two Mg-atoms. The bonding interaction between the Mg2 and C60 fragments is ionic in nature and the [Mg2 2+ ] and [C60 2- ] represent the bonding pattern in the Mg2 @C60 system. The designed endohedrally encapsulated system behaves as an electride
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a electride
|
650 |
|
4 |
|a electron localization function (ELF) basin
|
650 |
|
4 |
|a endohedrally encapsulated fullerene
|
650 |
|
4 |
|a energy decomposition analysis (EDA)
|
650 |
|
4 |
|a non-nuclear attractor (NNA)
|
700 |
1 |
|
|a Saha, Ranajit
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chattaraj, Pratim K
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 41(2020), 17 vom: 30. Juni, Seite 1645-1653
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:41
|g year:2020
|g number:17
|g day:30
|g month:06
|g pages:1645-1653
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.26207
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 41
|j 2020
|e 17
|b 30
|c 06
|h 1645-1653
|