A Dual Camera System for High Spatiotemporal Resolution Video Acquisition

This paper presents a dual camera system for high spatiotemporal resolution (HSTR) video acquisition, where one camera shoots a video with high spatial resolution and low frame rate (HSR-LFR) and another one captures a low spatial resolution and high frame rate (LSR-HFR) video. Our main goal is to c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 10 vom: 15. Okt., Seite 3275-3291
1. Verfasser: Cheng, Ming (VerfasserIn)
Weitere Verfasser: Ma, Zhan, Asif, M Salman, Xu, Yiling, Liu, Haojie, Bao, Wenbo, Sun, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM308334957
003 DE-627
005 20231225131521.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.2983371  |2 doi 
028 5 2 |a pubmed24n1027.xml 
035 |a (DE-627)NLM308334957 
035 |a (NLM)32248090 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Ming  |e verfasserin  |4 aut 
245 1 2 |a A Dual Camera System for High Spatiotemporal Resolution Video Acquisition 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a dual camera system for high spatiotemporal resolution (HSTR) video acquisition, where one camera shoots a video with high spatial resolution and low frame rate (HSR-LFR) and another one captures a low spatial resolution and high frame rate (LSR-HFR) video. Our main goal is to combine videos from LSR-HFR and HSR-LFR cameras to create an HSTR video. We propose an end-to-end learning framework, AWnet, mainly consisting of a FlowNet and a FusionNet that learn an adaptive weighting function in pixel domain to combine inputs in a frame recurrent fashion. To improve the reconstruction quality for cameras used in reality, we also introduce noise regularization under the same framework. Our method has demonstrated noticeable performance gains in terms of both objective PSNR measurement in simulation with different publicly available video and light-field datasets and subjective evaluation with real data captured by dual iPhone 7 and Grasshopper3 cameras. Ablation studies are further conducted to investigate and explore various aspects, such as reference structure, camera parallax, exposure time, etc) of our system to fully understand its capability for potential applications 
650 4 |a Journal Article 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
700 1 |a Asif, M Salman  |e verfasserin  |4 aut 
700 1 |a Xu, Yiling  |e verfasserin  |4 aut 
700 1 |a Liu, Haojie  |e verfasserin  |4 aut 
700 1 |a Bao, Wenbo  |e verfasserin  |4 aut 
700 1 |a Sun, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 10 vom: 15. Okt., Seite 3275-3291  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:10  |g day:15  |g month:10  |g pages:3275-3291 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.2983371  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 10  |b 15  |c 10  |h 3275-3291