Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 14 vom: 06. Juli, Seite 4057-4068
1. Verfasser: Lu, Jun (VerfasserIn)
Weitere Verfasser: Sun, Jingjing, Jiang, Anqi, Bai, Mengjuan, Fan, Chunguo, Liu, Jinyi, Ning, Guogui, Wang, Changquan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Rosa chinensis Continuous flowering day-neutral plants long-day plants photoperiod responses short-day plants Arabidopsis Proteins Plant Proteins
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Photoperiodic flowering responses are classified into three major types: long day (LD), short day (SD), and day neutral (DN). The inverse responses to daylength of LD and SD plants have been partly characterized in Arabidopsis and rice; however, the molecular mechanism underlying the DN response is largely unknown. Modern roses are economically important ornamental plants with continuous flowering (CF) features, and are generally regarded as DN plants. Here, RcCO and RcCOL4 were identified as floral activators up-regulated under LD and SD conditions, respectively, in the CF cultivar Rosa chinensis 'Old-Blush'. Diminishing the expression of RcCO or/and RcCOL4 by virus-induced gene silencing (VIGS) delayed flowering time under both SDs and LDs. Interestingly, in contrast to RcCO-silenced plants, the flowering time of RcCOL4-silenced plants was more delayed under SD than under LD conditions, indicating perturbed plant responses to day neutrality. Further analyses revealed that physical interaction between RcCOL4 and RcCO facilitated binding of RcCO to the CORE motif in the promoter of RcFT and induction of RcFT. Taken together, the complementary expression of RcCO in LDs and of RcCOL4 in SDs guaranteed flowering under favorable growth conditions regardless of the photoperiod. This finding established the molecular foundation of CF in roses and further shed light on the underlying mechanisms of DN responses
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print
CommentIn: J Exp Bot. 2020 Jul 6;71(14):3923-3926. - PMID 32628767
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa161