|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM308101642 |
003 |
DE-627 |
005 |
20240229162714.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2020.2981922
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM308101642
|
035 |
|
|
|a (NLM)32224457
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Wenhan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Advancing Image Understanding in Poor Visibility Environments
|b A Collective Benchmark Study
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Existing enhancement methods are empirically expected to help the high-level end computer vision task: however, that is observed to not always be the case in practice. We focus on object or face detection in poor visibility enhancements caused by bad weathers (haze, rain) and low light conditions. To provide a more thorough examination and fair comparison, we introduce three benchmark sets collected in real-world hazy, rainy, and low-light conditions, respectively, with annotated objects/faces. We launched the UG2+ challenge Track 2 competition in IEEE CVPR 2019, aiming to evoke a comprehensive discussion and exploration about whether and how low-level vision techniques can benefit the high-level automatic visual recognition in various scenarios. To our best knowledge, this is the first and currently largest effort of its kind. Baseline results by cascading existing enhancement and detection models are reported, indicating the highly challenging nature of our new data as well as the large room for further technical innovations. Thanks to a large participation from the research community, we are able to analyze representative team solutions, striving to better identify the strengths and limitations of existing mindsets as well as the future directions
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Yuan, Ye
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Wenqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jiaying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Scheirer, Walter J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zhangyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Taiheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhong, Qiaoyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Di
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pu, Shiliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Yuqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qu, Yanyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Yuhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Liang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zhonghao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hong, Chen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Siyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qu, Xiaochao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wan, Pengfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Shuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhong, Minhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Taiyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Lingzhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Yandong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Yao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Zhenfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Jinxiu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jingwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Tianyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Quan, Yuhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Tingyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xiaochuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gu, Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Shengdi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Cong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Shifeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chi, Cheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhuang, Chubin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lei, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Stan Z
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Shizheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Ruizhe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yi, Dong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zuo, Zheming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chi, Jianning
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Huan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yixiu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Xingyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Zhenyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Chang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yongzhou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhong, Huicai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Heng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jianfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liao, Wenjuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jiangang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Liguo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Mingyue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Likun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g (2020) vom: 27. März
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g year:2020
|g day:27
|g month:03
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2020.2981922
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2020
|b 27
|c 03
|