|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM308058674 |
003 |
DE-627 |
005 |
20231225130924.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.26195
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1026.xml
|
035 |
|
|
|a (DE-627)NLM308058674
|
035 |
|
|
|a (NLM)32220073
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Alaidi, Osama
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Statistical mechanical prediction of ligand perturbation to RNA secondary structure and application to riboswitches
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.06.2021
|
500 |
|
|
|a Date Revised 14.06.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2020 Wiley Periodicals, Inc.
|
520 |
|
|
|a The realization that noncoding RNA is implicated in numerous cellular processes, makes it imperative to understand and predict RNA-folding. RNA secondary structure prediction is more tractable than tertiary structure or protein structure. Yet insights into RNA structure-function relationships are complicated by coupling between RNA-folding and ligand-binding. Here, perturbations to equilibrium secondary structure conformational distributions for two riboswitches are calculated in the presence of bound cognate ligands. This work incorporates a key factor coupling ligand binding to RNA conformation but not considered in most previous calculations: the differential affinity of the ligand for a range of RNA-folding intermediates. Significant shifts in the free energy landscape (FEL) due to the ligand occur for transcripts of lengths corresponding to the "decision window," following transcription of the so-called anti-terminator helix. The results suggest how ligand perturbation can stabilize the formation of an intermediate conformation, readily facilitating terminator hairpin formation in the full-length riboswitch
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a RNA-ligand interaction
|
650 |
|
4 |
|a S-adenosyl methionine
|
650 |
|
4 |
|a regulation of gene expression
|
650 |
|
4 |
|a riboswitch RNA secondary structure
|
650 |
|
4 |
|a riboswitch design
|
650 |
|
4 |
|a statistical thermodynamics
|
650 |
|
7 |
|a Ligands
|2 NLM
|
650 |
|
7 |
|a Riboswitch
|2 NLM
|
650 |
|
7 |
|a RNA
|2 NLM
|
650 |
|
7 |
|a 63231-63-0
|2 NLM
|
700 |
1 |
|
|a Aboul-Ela, Fareed
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 41(2020), 16 vom: 15. Juni, Seite 1521-1537
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:41
|g year:2020
|g number:16
|g day:15
|g month:06
|g pages:1521-1537
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.26195
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 41
|j 2020
|e 16
|b 15
|c 06
|h 1521-1537
|