Similarity-Preserving Linkage Hashing for Online Image Retrieval

Online image hashing aims to update hash functions on-the-fly along with newly arriving data streams, which has found broad applications in computer vision and beyond. To this end, most existing methods update hash functions simply using discrete labels or pairwise similarity to explore intra-class...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 24. März
1. Verfasser: Lin, Mingbao (VerfasserIn)
Weitere Verfasser: Ji, Rongrong, Chen, Shen, Sun, Xiaoshuai, Lin, Chia-Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM308033140
003 DE-627
005 20240229162709.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2981879  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM308033140 
035 |a (NLM)32217477 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Mingbao  |e verfasserin  |4 aut 
245 1 0 |a Similarity-Preserving Linkage Hashing for Online Image Retrieval 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Online image hashing aims to update hash functions on-the-fly along with newly arriving data streams, which has found broad applications in computer vision and beyond. To this end, most existing methods update hash functions simply using discrete labels or pairwise similarity to explore intra-class relationships, which, however, often deteriorates search performance when facing a domain gap or semantic shift. One reason is that they ignore the particular semantic relationships among different classes, which should be taken into account in updating hash functions. Besides, the common characteristics between the label vectors (can be regarded as a sort of binary codes) and to-be-learned binary hash codes have left unexploited. In this paper, we present a novel online hashing method, termed Similarity Preserving Linkage Hashing (SPLH), which not only utilizes pairwise similarity to learn the intra-class relationships, but also fully exploits a latent linkage space to capture the inter-class relationships and the common characteristics between label vectors and to-be-learned hash codes. Specifically, SPLH first maps the independent discrete label vectors and binary hash codes into a linkage space, through which the relative semantic distance between data points can be assessed precisely. As a result, the pairwise similarities within the newly arriving data stream are exploited to learn the latent semantic space to benefit binary code learning. To learn the model parameters effectively, we further propose an alternating optimization algorithm. Extensive experiments conducted on three widely-used datasets demonstrate the superior performance of SPLH over several state-of-the-art online hashing methods 
650 4 |a Journal Article 
700 1 |a Ji, Rongrong  |e verfasserin  |4 aut 
700 1 |a Chen, Shen  |e verfasserin  |4 aut 
700 1 |a Sun, Xiaoshuai  |e verfasserin  |4 aut 
700 1 |a Lin, Chia-Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 24. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:24  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2981879  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 24  |c 03