Gold Nanorod Synthesis with Small Thiolated Molecules

Size and shape tunability have been widely demonstrated for gold nanorods (AuNRs), but reproducible and reliable protocols for the synthesis of small nanocrystals with high yield are still needed for potential biomedical applications. Here, we present novel seed-mediated and seedless protocols for g...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 14 vom: 14. Apr., Seite 3758-3769
1. Verfasser: Requejo, Katherinne I (VerfasserIn)
Weitere Verfasser: Liopo, Anton V, Zubarev, Eugene R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:Size and shape tunability have been widely demonstrated for gold nanorods (AuNRs), but reproducible and reliable protocols for the synthesis of small nanocrystals with high yield are still needed for potential biomedical applications. Here, we present novel seed-mediated and seedless protocols for gold nanorods by incorporating bioadditives or small thiolated molecules during the growth stage. The bioadditives glutathione (GSH), oxidized glutathione (GSSG), l-cysteine (l-cys), and l-methionine (l-met) are utilized in nanomolar and micromolar concentrations to modify the aspect ratio of AuNRs in a reproducible form. Overall, smaller aspect ratios are achieved for both synthetic approaches due to reduction in length or increment in length and width depending on the method, type of bioadditive and the strength of its interaction with the nanorod surface. For the seeded synthesis, only GSSG produces large nanorods in high yield, whereas for the seedless method GSH and GSSG form small nanorods with higher quality when compared to controls
Beschreibung:Date Completed 13.08.2020
Date Revised 13.08.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c00302