Revealing Electronic Signature of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-ion Battery Material Designs

Anion redox in lithium transition metal oxides such as Li2RuO3 and Li2MnO3, has catalyzed intensive research efforts to find transition metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of observed anion redox remains debated, and more dire...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 31(2019), 19 vom: 24.
1. Verfasser: Yu, Yang (VerfasserIn)
Weitere Verfasser: Karayaylali, Pinar, Nowak, Stanisław H, Giordano, Livia, Gauthier, Magali, Hong, Wesley, Kou, Ronghui, Li, Qinghao, Vinson, John, Kroll, Thomas, Sokaras, Dimosthenis, Sun, Cheng-Jun, Charles, Nenian, Maglia, Filippo, Jung, Roland, Shao-Horn, Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM307964612
003 DE-627
005 20240328233849.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.9b01821  |2 doi 
028 5 2 |a pubmed24n1352.xml 
035 |a (DE-627)NLM307964612 
035 |a (NLM)32210521 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Yang  |e verfasserin  |4 aut 
245 1 0 |a Revealing Electronic Signature of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-ion Battery Material Designs 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.03.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Anion redox in lithium transition metal oxides such as Li2RuO3 and Li2MnO3, has catalyzed intensive research efforts to find transition metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of observed anion redox remains debated, and more direct experimental evidence is needed. In this work, we have shown electronic signatures of oxygen-oxygen coupling, direct evidence central to lattice oxygen redox (O2-/(O2)n-), in charged Li2-xRuO3 after Ru oxidation (Ru4+/Ru5+) upon first-electron removal with lithium de-intercalation. Experimental Ru L3-edge high-energy-resolution fluorescence detected X-ray absorption spectra (HERFD-XAS), supported by ab-initio simulations, revealed that the increased intensity in the high-energy shoulder upon lithium de-intercalation resulted from increased O-O coupling, inducing (O-O) σ*-like states with π overlap with Ru d-manifolds, in agreement with O K-edge XAS spectra. Experimental and simulated O K-edge X-ray emission spectra (XES) further supported this observation with the broadening of the oxygen non-bonding feature upon charging, also originated from (O-O) σ* states. This lattice oxygen redox of Li2-xRuO3 was accompanied by a small amount of O2 evolution in the first charge from differential electrochemistry mass spectrometry (DEMS) but diminished in the subsequent cycles, in agreement with the more reduced states of Ru in later cycles from Ru L3-edge HERFD-XAS. These observations indicated that Ru redox contributed more to discharge capacities after the first cycle. This study has pinpointed the key spectral fingerprints related to lattice oxygen redox from a molecular level and constructed a transferrable framework to rationally interpret the spectroscopic features by combining advanced experiments and theoretical calculations to design materials for Li-ion batteries and electrocatalysis applications 
650 4 |a Journal Article 
700 1 |a Karayaylali, Pinar  |e verfasserin  |4 aut 
700 1 |a Nowak, Stanisław H  |e verfasserin  |4 aut 
700 1 |a Giordano, Livia  |e verfasserin  |4 aut 
700 1 |a Gauthier, Magali  |e verfasserin  |4 aut 
700 1 |a Hong, Wesley  |e verfasserin  |4 aut 
700 1 |a Kou, Ronghui  |e verfasserin  |4 aut 
700 1 |a Li, Qinghao  |e verfasserin  |4 aut 
700 1 |a Vinson, John  |e verfasserin  |4 aut 
700 1 |a Kroll, Thomas  |e verfasserin  |4 aut 
700 1 |a Sokaras, Dimosthenis  |e verfasserin  |4 aut 
700 1 |a Sun, Cheng-Jun  |e verfasserin  |4 aut 
700 1 |a Charles, Nenian  |e verfasserin  |4 aut 
700 1 |a Maglia, Filippo  |e verfasserin  |4 aut 
700 1 |a Jung, Roland  |e verfasserin  |4 aut 
700 1 |a Shao-Horn, Yang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 31(2019), 19 vom: 24.  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:19  |g day:24 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.9b01821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 19  |b 24